ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (93)
  • American Physical Society (APS)
  • American Geophysical Union (AGU)
  • 1995-1999  (41)
  • 1990-1994  (52)
  • 1
    Publication Date: 1997-01-01
    Description: For very small samples, it is difficult to prepare graphitic targets that will yield a useful and steady sputtered ion beam. Working with materials separated by preparative capillary gas chromatography, we have succeeded with amounts as small as 20 μg C. This seems to be a practical limit, as it involves 1) multiple chromatographic runs with trapping of effluent fractions, 2) recovery and combustion of the fractions, 3) graphitization and 4) compression of the resultant graphite/cobalt matrix into a good sputter target. Through such slow and intricate work, radiocarbon ages of lignin derivatives and hydrocarbons from coastal sediments have been determined. If this could be accomplished as an “online” measurement by flowing the analytes directly into a microwave gas ion source, with a carrier gas, then the number of processing steps could be minimized. Such a system would be useful not just for chromatographic effluents, but for any gaseous material, such as CO2 produced from carbonates. We describe tests using such an ion source.
    Print ISSN: 0033-8222
    Electronic ISSN: 1945-5755
    Topics: Archaeology , Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1993-02-01
    Description: Two-dimensional, unsteady flow of a viscous, incompressible fluid in a stepped channel has been studied by the numerical solution of the Navier-Stokes equation using an accurate finite-difference method. With a sinusoidal mass flow rate, the problem has three governing parameters: the Reynolds number, the Strouhal number, and the step height. The effects on the flow of varying all three parameters has been investigated systematically. In appropriate parameter regimes, a strong vortex wave' is generated during the forward phase when the flow is over the step into the expansion. Secondary effects on the wave can result in a complex flow pattern with each major structure of the flow consisting of an eddy with more than one core. No such wave is found during the reverse phase of the flow. The generation and development of the wave is examined in some detail, and our results are compared and contrasted with those of previous studies, both experimental and theoretical, of flow in non-uniform vessels. © 1993, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1993-10-01
    Description: An experimental and numerical investigation of the density distribution produced in a container by a negatively buoyant jet has been undertaken to evaluate the effect of the forced vertical motion of the environment. Vertical motion results from inflows and exhausts above and below the jet. Three distinct cases were identified. In the first, a velocity in the environment opposed the jet and produced a steady flow. This configuration was used to measure the entrainment flux along the length of the fountain. This configuration is similar to a jet impinging on an interface for which the entrainment depends on the local Froude number. The experiments covered a wider range of local Froude numbers than previously published and have produced results which are different from those in the literature. In the second case, the environment was at rest except for the motion induced by the fountain. An interface formed at the base of the fountain and moved quickly to the top. Once there, it advanced slowly due to entrainment through the end of the fountain and the length of the fountain increased. The final case is a co-flowing environment. No interface formed if the environment velocity was greater than the advance velocity of the end of the fountain. However, one formed for a smaller environment velocity and the end of the fountain was observed to undergo a quasi-periodic jump phenomenon. The top of the fountain would advance with the environment particles for a short time and then snap back to the elevation of a fountain in an infinite environment. A new interface formed and the cycle repeated. © 1993, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1994-11-10
    Description: An exact result is calculated numerically for the dilute limiting, zero shear viscosity of bimodal suspensions of hard spheres. The required hydrodynamic functions are calculated from recent results for the resistivities of unequal spheres. Both the hydrodynamic and Brownian contributions to the Huggins coefficient exhibit a minimum that is symmetric in mixing volume fraction. The resultant minimum deepens with increasing size ratio. The results are discussed in the light of published measurements of the viscosity for bimodal suspensions and previous phenomenological theories. The reduction of viscosity upon mixing is seen to be a result of near-field hydrodynamic shielding of asymmetric particle pairs. It is also shown that the use of far-field hydrodynamic interactions yields qualitatively incorrect results for the viscosity of binary mixtures. A parametrization of the bimodal results allows an estimation of the effects of suspension polydispersity on the Huggins coefficient. For polydispersities of ten percent or less, the Huggins coefficient is essentially unchanged from the value calculated for an equivalent, monodisperse suspension at equal volume fraction. A parametrization of these results is provided for relating the reduction in Huggins coefficient to the polydispersity index. © 1994, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1996-09-25
    Description: Motivated by the study of blood flow in the major coronary arteries, which are situated on the outer surface of the pumping heart, we analyse flow of an incompressible Newtonian fluid in a tube whose curvature varies both along the tube and with time. Attention is restricted to the case in which the tube radius is fixed and its centreline moves in a plane. Nevertheless, the governing equations are very complicated, because the natural coordinate system involves acceleration, rotation and deformation of the frame of reference, and their derivation forms a major part of the paper. Then they are applied to two particular, relatively simple examples: a tube of uniform but time-dependent curvature; and a sinuous tube, representing a small-amplitude oscillation about a straight pipe. In the former case the curvature is taken to be small and to vary by a small amount, and the solution is developed as a triple power series in mean curvature ratio δ0, curvature variation ε and Dean number D. In the latter case the Reynolds number is taken to be large and a linearized solution for the perturbation to the flow in the boundary layer at the tube wall is obtained, following Smith (1976a). In each case the solution is taken far enough that the first non-trivial effects of the variable curvature can be determined. Results are presented in terms of the oscillatory wall shear stress distribution and, in the uniform curvature case, the contribution of steady streaming to the mean wall shear stress is calculated. Estimation of the parameters for the human heart indicates that the present results are not directly applicable, but point the way for future work.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1998-05-25
    Description: The effect of wall inertia on the self-excited oscillations in a collapsible channel flow is investigated by solving the full coupled two-dimensional membrane-flow equations. This is the continuation of a previous study in which self-excited oscillations were predicted in an asymmetric channel with a tensioned massless elastic membrane (Luo & Pedley 1996). It is found that a different type of self-excited oscillation, a form of flutter, is superposed on the original large-amplitude, low-frequency oscillations. Unlike the tension-induced oscillations, the flutter has high frequency, and grows with time from a small amplitude until it dominates the original slower mode. The critical value of tension below which oscillations arise (at fixed Reynolds number) is found to increase as the wall inertia is increased. The rate at which energy is (a) dissipated in the flow field and (b) transferred to the wall during the flutter is discussed, and results at different parameter values are compared with those of a massless membrane. There is also a discussion of whether the onset of flutter, or that of the slower oscillations, is correlated with the appearance of flow limitation, as is thought to be the case in the context of wheezing during forced expiration of air from the lungs.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1999-12-25
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1999-03-25
    Description: Motivated by the study of blood flow in the coronary arteries, this paper examines the flow of an incompressible Newtonian fluid in a tube of time-dependent curvature. The flow is driven by an oscillatory pressure gradient with the same dimensionless frequency, α, as the curvature variation. The dimensionless governing parameters of the flow are α, the curvature ratio δ0 a secondary streaming Reynolds number Rs and a parameter Rt representing the time-dependence of curvature. We consider the parameter regime δ0 ≪ Rt ≪ 1 (Rs and α remain O(1) initially) in which the effect of introducing time-dependent curvature is to perturb the flow driven by an oscillatory pressure gradient in a fixed curved tube. Flows driven by low- and high-frequency pressure gradients are then considered. At low frequency (δ0 ≪ Rt ≪ α ≪ 1) the flow is determined by using a sequence of power series expansions (Rs = O(1)). At high frequency (δ0 ≪ Rt ≪ 1/α2 ≪ 1) the solution is obtained using matched asymptotic expansions for the region near the wall (Stokes layer) and the region away from the wall in the interior of the pipe. The behaviour of the flow in the interior is then determined at both small and intermediate values of Rs. For both the low and high frequency cases, we find the principal corrections introduced by the time-varying curvature to the primary and secondary flows, and hence to the wall shear stress. The physiological application to flow in the coronary arteries is discussed.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1996-10-10
    Description: When a suspension of the bacterium Bacillus subtilis is placed in a chamber with its upper surface open to the atmosphere, complex bioconvection patterns form. These arise because the cells (a) are denser than water, and (b) swim upwards on average so that the density of an initially uniform suspension becomes greater at the top than at the bottom. When the vertical density gradient becomes large enough an overturning instability occurs which evolves ultimately into the observed patterns. The cells swim upwards because they are oxytactic, i.e. they swim up gradients of oxygen, and they consume oxygen. These properties are incorporated in conservation equations for the cell and oxygen concentrations, which, for the pre-instability stage of the pattern formation process, have been solved in a previous paper (Hillesdon, Pedley & Kessler 1995). In this paper we carry out a linear instability analysis of the steady-state cell and oxygen concentration distributions. There are intrinsic differences between the shallow-and deep-chamber cell concentration distributions, with the consequence that the instability is non-oscillatory in shallow chambers, but must be oscillatory in deep chambers whenever the critical wavenumber is non-zero. We investigate how the critical Rayleigh number for the suspension varies with the three independent parameters of the problem and discuss the most appropriate definition of the Rayleigh number. Several qualitative aspects of the solution of the linear instability problem agree with experimental observation.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1998-09-10
    Description: Complex bioconvection patterns are observed when a suspension of the oxytactic bacterium Bacillus subtilis is placed in a chamber with its upper surface open to the atmosphere. The patterns form because the bacteria are denser than water and vim upwards (up an oxygen gradient) on average. This results in an unstable density distribution and an overturning instability. The pattern formation is dependent on depth and experiments in a tilted chamber have shown that as the depth increases the first patterns formed are hexagons in which the fluid flows down in the centre. The linear stability of this system was analysed by Hillesdon & Pedley (1996) who und that the system is unstable if the Rayleigh number Γ exceeds a critical value, which depends on the wavenumber k of the disturbance as well as on the values of other parameters. Hillesdon & Pedley found that the critical wavenumber kc, could be either zero or non-zero, depending on the parameter values. In this paper we carry out a weakly nonlinear analysis to determine the relative ability of hexagon and roll patterns formed at the onset of bioconvection. The analysis is different in the two cases kc ≠ 0 and kc = 0. For the kc ≠ 0 case (which appears to be more relevant experimentally) the model does predict down hexagons, but only for a certain range of parameter values. Hence the analysis allows us to refine previous parameter estimates. For the kc = 0 case we carry out a two-dimensional analysis and derive an equation describing the evolution of the horizontal planform function.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...