ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (6)
  • 1995-1999  (8)
  • 1975-1979  (4)
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Entomology 22 (1977), S. 193-218 
    ISSN: 0066-4170
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-11-24
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1996-05-01
    Print ISSN: 1063-651X
    Electronic ISSN: 1095-3787
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-07-10
    Description: Using a matched asymptotic expansion we analyse the two-dimensional, near-critical reflection of a weakly nonlinear internal gravity wave from a sloping boundary in a uniformly stratified fluid. Taking a distinguished limit in which the amplitude of the incident wave, the dissipation, and the departure from criticality are all small, we obtain a reduced description of the dynamics. This simplification shows how either dissipation or transience heals the singularity which is presented by the solution of Phillips (1966) in the precisely critical case. In the inviscid critical case, an explicit solution of the initial value problem shows that the buoyancy perturbation and the alongslope velocity both grow linearly with time, while the scale of the reflected disturbance is reduced as 1/t. During the course of this scale reduction, the stratification is Overturned' and the Miles-Howard condition for stratified shear flow stability is violated. However, for all slope angles, the Overturning' occurs before the Miles-Howard stability condition is violated and so we argue that the first instability is convective. Solutions of the simplified dynamics resemble certain experimental visualizations of the reflection process. In particular, the buoyancy field computed from the analytic solution is in good agreement with visualizations reported by Thorpe & Haines (1987). One curious aspect of the weakly nonlinear theory is that the final reduced description is a linear equation (at the solvability order in the expansion all of the apparently resonant nonlinear contributions cancel amongst themselves). However, the reconstructed fields do contain nonlinearly driven second harmonics which are responsible for an important symmetry breaking in which alternate vortices differ in strength and size from their immediate neighbours.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-01-25
    Description: This paper formulates a model of mixing in a stratified and turbulent fluid. The model uses the horizontally averaged vertical buoyancy gradient and the density of turbulent kinetic energy as variables. Heuristic 'mixing-length' arguments lead to a coupled set of parabolic differential equations. A particular form of mechanical forcing is proposed; for certain parameter values the relationship between the buoyancy flux and the buoyancy gradient is non-monotonic and this leads to an instability of equilibria with linear stratification. The instability results in the formation of steps and interfaces in the buoyancy profile. In contrast to previous ones, the model is mathematically well posed and the interfaces have an equilibrium thickness that is much larger than that expected from molecular diffusion. The turbulent mixing process can take one of three forms depending on the strength of the initial stratification. When the stratification is weak, instability is not present and mixing smoothly homogenizes the buoyancy. At intermediate strengths of stratification, layers and interfaces form rapidly over a substantial interior region bounded by edge layers associated with the fluxless condition of the boundaries. The interior pattern subsequently develops more slowly as interfaces drift together and merge; simultaneously, the edge layers advance inexorably into the interior. Eventually the edge layers meet in the middle and the interior pattern of layers is erased. Any remaining structure subsequently decays smoothly to the homogeneous state. Both the weak and intermediate stratified cases are in agreement with experimental phenomenology. The model predicts a third case, with strong stratification, not yet found experimentally, where the central region is linearly stable and no steps form there. However, the edge layers are unstable; mixing fronts form and then erode into the interior.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1997-02-25
    Description: Matched asymptotic expansions are used to obtain a reduced description of the nonlinear and viscous evolution of small, localized vorticity defects embedded in a Couette flow. This vorticity defect approximation is similar to the Vlasov equation, and to other reduced descriptions used to study forced Rossby wave critical layers and their secondary instabilities. The linear stability theory of the vorticity defect approximation is developed in a concise and complete form. The dispersion relations for the normal modes of both inviscid and viscous defects are obtained explicitly. The Nyquist method is used to obtain necessary and sufficient conditions for instability, and to understand qualitatively how changes in the basic state alter the stability properties. The linear initial value problem is solved explicitly with Laplace transforms; the resulting solutions exhibit the transient growth and eventual decay of the streamfunction associated with the continuous spectrum. The expansion scheme can be generalized to handle vorticity defects in non-Couette, but monotonic, velocity profiles.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-11-23
    Description: We derive a wave-averaged potential vorticity equation describing the evolution of strongly stratified, rapidly rotating quasi-geostrophic (QG) flow in a field of inertia-gravity internal waves. The derivation relies on a multiple-time-scale asymptotic expansion of the Eulerian Boussinesq equations. Our result confirms and extends the theory of Bühler & McIntyre (J. Fluid Mech., vol. 354, 1998, pp. 609-646) to non-uniform stratification with buoyancy frequency and therefore non-uniform background potential vorticity , and does not require spatial-scale separation between waves and balanced flow. Our interest in non-uniform background potential vorticity motivates the introduction of a new quantity: 'available potential vorticity' (APV). Like Ertel potential vorticity, APV is exactly conserved on fluid particles. But unlike Ertel potential vorticity, linear internal waves have no signature in the Eulerian APV field, and the standard QG potential vorticity is a simple truncation of APV for low Rossby number. The definition of APV exactly eliminates the Ertel potential vorticity signal associated with advection of a non-uniform background state, thereby isolating the part of Ertel potential vorticity available for balanced-flow evolution. The effect of internal waves on QG flow is expressed concisely in a wave-averaged contribution to the materially conserved QG potential vorticity. We apply the theory by computing the wave-induced QG flow for a vertically propagating wave packet and a mode-one wave field, both in vertically bounded domains. © 2015 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-08-10
    Description: We derive an asymptotic model that describes the nonlinear coupled evolution of (i) near-inertial waves (NIWs), (ii) balanced quasi-geostrophic flow and (iii) near-inertial second harmonic waves with frequency near, where is the local inertial frequency. This 'three-component' model extends the two-component model derived by Xie & Vanneste (J. Fluid Mech., vol. 774, 2015, pp. 143-169) to include interactions between near-inertial and waves. Both models possess two conservation laws which together imply that oceanic NIWs forced by winds, tides or flow over bathymetry can extract energy from quasi-geostrophic flows. A second and separate implication of the three-component model is that quasi-geostrophic flow catalyses a loss of NIW energy to freely propagating waves with near-frequency that propagate rapidly to depth and transfer energy back to the NIW field at very small vertical scales. The upshot of near-generation is a two-step mechanism whereby quasi-geostrophic flow catalyses a nonlinear transfer of near-inertial energy to the small scales of wave breaking and diapycnal mixing. A comparison of numerical solutions with both Boussinesq and three-component models for a two-dimensional initial value problem reveals strengths and weaknesses of the model while demonstrating the extraction of quasi-geostrophic energy and production of small vertical scales. © 2016 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-03-29
    Description: The interaction of the barotropic tide with a tall, two-dimensional ridge is examined analytically and numerically at latitudes where the tide is subinertial, and contrasted to when the tide is superinertial. When the tide is subinertial, the energy density associated with the response grows with latitude as both the oscillatory along-ridge flow and near-ridge isopycnal displacement become large. Where f=0, nonlinear processes lead to the formation of along-ridge jets, which become faster at high latitudes. Dissipation and mixing is larger, and peaks later in the tidal cycle when the tide is subinertial compared with when the tide is superinertial. Mixing occurs mainly on the flanks of the topography in both cases, though a superinertial tide may additionally generate mixing above topography arising from convective breaking of radiating waves. © 2016 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-09-12
    Description: We derive a time-averaged 'hydrostatic wave equation' from the hydrostatic Boussinesq equations that describes the propagation of inertia-gravity internal waves through quasi-geostrophic flow. The derivation uses a multiple-scale asymptotic method to isolate wave field evolution over intervals much longer than a wave period, assumes the wave field has a well-defined non-inertial frequency such as that of the mid-latitude semi-diurnal lunar tide, assumes that the wave field and quasi-geostrophic flow have comparable spatial scales and neglects nonlinear wave-wave dynamics. As a result the hydrostatic wave equation is a reduced model applicable to the propagation of large-scale internal tides through the inhomogeneous and moving ocean. A numerical comparison with the linearized and hydrostatic Boussinesq equations demonstrates the validity of the hydrostatic wave equation model and illustrates how the model fails when the quasi-geostrophic flow is too strong and the wave frequency is too close to inertial. The hydrostatic wave equation provides a first step toward a coupled model for energy transfer between oceanic internal tides and quasi-geostrophic eddies and currents. © 2017 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...