ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (3)
  • Boulder : The Geological Society of America
  • 1995-1999  (1)
  • 1990-1994  (2)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 1990-12-14
    Description: The Kangmar metamorphic-igneous complex is one of the most accessible examples of an enigmatic group of gneiss domes (the North Himalayan belt) that lies midway between the Greater Himalaya and the Indus-Tsangpo suture in southern Tibet. Structural analysis suggests that the domal structure formed as a consequence of extensional deformation, much like the Tertiary metamorphic core complexes in the North American Cordillera. Unlike its North American counterparts, the Kangmar dome developed in an entirely convergent tectonic setting. The documentation of metamorphic core complexes in the Himalayan orogen supports the emerging concept that extensional processes may play an important role in the evolution of compressional mountain belts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Z -- Liu, Y -- Hodges, K V -- Burchfiel, B C -- Royden, L H -- Deng, C -- New York, N.Y. -- Science. 1990 Dec 14;250(4987):1552-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17818283" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-05-02
    Description: Field observations and satellite geodesy indicate that little crustal shortening has occurred along the central to southern margin of the eastern Tibetan plateau since about 4 million years ago. Instead, central eastern Tibet has been nearly stationary relative to southeastern China, southeastern Tibet has rotated clockwise without major crustal shortening, and the crust along portions of the eastern plateau margin has been extended. Modeling suggests that these phenomena are the result of continental convergence where the lower crust is so weak that upper crustal deformation is decoupled from the motion of the underlying mantle. This model also predicts east-west extension on the high plateau without convective removal of Tibetan lithosphere and without eastward movement of the crust east of the plateau.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Royden -- Burchfiel -- King -- Wang -- Chen -- Shen -- Liu -- New York, N.Y. -- Science. 1997 May 2;276(5313):788-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉L. H. Royden, B. C. Burchfiel, R. W. King, E. Wang, Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Z. Chen, F. Shen, Y. Liu, Chengdu Institute of Geology and Mineral Resources, Chengdu, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9115202" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1992-11-27
    Description: The South Tibetan detachment system separates the high-grade metamorphic core of the Himalayan orogen from its weakly metamorphosed suprastructure. It is thought to have developed in response to differences in gravitational potential energy produced by crustal thickening across the mountain front. Geochronologic data from the Rongbuk Valley, north of Qomolangma (Mount Everest) in southern Tibet, demonstrate that at least one segment of the detachment system was active between 19 and 22 million years ago, an interval characterized by large-scale crustal thickening at lower structural levels. These data suggest that decoupling between an extending upper crust and a converging lower crust was an important aspect of Himalayan tectonics in Miocene time.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hodges, K V -- Parrish, R R -- Housh, T B -- Lux, D R -- Burchfiel, B C -- Royden, L H -- Chen, Z -- New York, N.Y. -- Science. 1992 Nov 27;258(5087):1466-70.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17755108" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...