ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amino Acid Sequence  (28)
  • 2005-2009  (4)
  • 1995-1999  (10)
  • 1990-1994  (14)
  • 1
    Publication Date: 1998-10-23
    Description: Analysis of the 1,042,519-base pair Chlamydia trachomatis genome revealed unexpected features related to the complex biology of chlamydiae. Although chlamydiae lack many biosynthetic capabilities, they retain functions for performing key steps and interconversions of metabolites obtained from their mammalian host cells. Numerous potential virulence-associated proteins also were characterized. Several eukaryotic chromatin-associated domain proteins were identified, suggesting a eukaryotic-like mechanism for chlamydial nucleoid condensation and decondensation. The phylogenetic mosaic of chlamydial genes, including a large number of genes with phylogenetic origins from eukaryotes, implies a complex evolution for adaptation to obligate intracellular parasitism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stephens, R S -- Kalman, S -- Lammel, C -- Fan, J -- Marathe, R -- Aravind, L -- Mitchell, W -- Olinger, L -- Tatusov, R L -- Zhao, Q -- Koonin, E V -- Davis, R W -- AI 39258/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Oct 23;282(5389):754-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Infectious Diseases, University of California, Berkeley, CA 94720, USA. ctgenome@socrates.berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9784136" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Amino Acid Sequence ; Amino Acids/biosynthesis ; Bacterial Outer Membrane Proteins/genetics ; Bacterial Proteins/chemistry/genetics ; Biological Evolution ; Chlamydia trachomatis/classification/*genetics/metabolism/physiology ; DNA Repair ; Energy Metabolism ; Enzymes/chemistry/genetics ; *Genome, Bacterial ; Humans ; Lipids/biosynthesis ; Molecular Sequence Data ; Peptidoglycan/biosynthesis/genetics ; Phylogeny ; Protein Biosynthesis ; Recombination, Genetic ; *Sequence Analysis, DNA ; Transcription, Genetic ; Transformation, Bacterial ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-07-04
    Description: Angiogenesis is thought to depend on a precise balance of positive and negative regulation. Angiopoietin-1 (Ang1) is an angiogenic factor that signals through the endothelial cell-specific Tie2 receptor tyrosine kinase. Like vascular endothelial growth factor, Ang1 is essential for normal vascular development in the mouse. An Ang1 relative, termed angiopoietin-2 (Ang2), was identified by homology screening and shown to be a naturally occurring antagonist for Ang1 and Tie2. Transgenic overexpression of Ang2 disrupts blood vessel formation in the mouse embryo. In adult mice and humans, Ang2 is expressed only at sites of vascular remodeling. Natural antagonists for vertebrate receptor tyrosine kinases are atypical; thus, the discovery of a negative regulator acting on Tie2 emphasizes the need for exquisite regulation of this angiogenic receptor system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maisonpierre, P C -- Suri, C -- Jones, P F -- Bartunkova, S -- Wiegand, S J -- Radziejewski, C -- Compton, D -- McClain, J -- Aldrich, T H -- Papadopoulos, N -- Daly, T J -- Davis, S -- Sato, T N -- Yancopoulos, G D -- New York, N.Y. -- Science. 1997 Jul 4;277(5322):55-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9204896" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Angiopoietin-1 ; Angiopoietin-2 ; Animals ; Blood Vessels/embryology/*metabolism ; Cells, Cultured ; Cloning, Molecular ; Embryo, Mammalian/metabolism ; Endothelial Growth Factors/genetics/metabolism ; Endothelium, Vascular/*cytology/metabolism ; Female ; Humans ; Ligands ; Lymphokines/genetics/metabolism ; Membrane Glycoproteins/antagonists & inhibitors/metabolism ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; *Neovascularization, Physiologic ; Phosphorylation ; Proteins/chemistry/*metabolism ; Rats ; Rats, Sprague-Dawley ; Receptor Protein-Tyrosine Kinases/*antagonists & inhibitors/metabolism ; Receptor, TIE-2 ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-06-13
    Description: Two families of small peptides that bind to the human thrombopoietin receptor and compete with the binding of the natural ligand thrombopoietin (TPO) were identified from recombinant peptide libraries. The sequences of these peptides were not found in the primary sequence of TPO. Screening libraries of variants of one of these families under affinity-selective conditions yielded a 14-amino acid peptide (Ile-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Ala) with high affinity (dissociation constant approximately 2 nanomolar) that stimulates the proliferation of a TPO-responsive Ba/F3 cell line with a median effective concentration (EC50) of 400 nanomolar. Dimerization of this peptide by a carboxyl-terminal linkage to a lysine branch produced a compound with an EC50 of 100 picomolar, which was equipotent to the 332-amino acid natural cytokine in cell-based assays. The peptide dimer also stimulated the in vitro proliferation and maturation of megakaryocytes from human bone marrow cells and promoted an increase in platelet count when administered to normal mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cwirla, S E -- Balasubramanian, P -- Duffin, D J -- Wagstrom, C R -- Gates, C M -- Singer, S C -- Davis, A M -- Tansik, R L -- Mattheakis, L C -- Boytos, C M -- Schatz, P J -- Baccanari, D P -- Wrighton, N C -- Barrett, R W -- Dower, W J -- New York, N.Y. -- Science. 1997 Jun 13;276(5319):1696-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Affymax Research Institute, 4001 Miranda Avenue, Palo Alto, CA 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9180079" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding, Competitive ; Blood Platelets/cytology ; Cell Division ; Cell Line ; Cells, Cultured ; Consensus Sequence ; Dimerization ; Erythropoietin/pharmacology ; Hematopoiesis/drug effects ; Humans ; Megakaryocytes/cytology ; Mice ; Molecular Sequence Data ; *Neoplasm Proteins ; Oligopeptides/*metabolism/*pharmacology ; Peptide Library ; Peptides/metabolism/pharmacology ; Platelet Count ; Proto-Oncogene Proteins/*agonists/metabolism ; *Receptors, Cytokine ; Receptors, Thrombopoietin ; Recombinant Proteins/metabolism/pharmacology ; Thrombopoietin/*metabolism/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-10-25
    Description: BAX is a pro-apoptotic protein of the BCL-2 family that is stationed in the cytosol until activated by a diversity of stress stimuli to induce cell death. Anti-apoptotic proteins such as BCL-2 counteract BAX-mediated cell death. Although an interaction site that confers survival functionality has been defined for anti-apoptotic proteins, an activation site has not been identified for BAX, rendering its explicit trigger mechanism unknown. We previously developed stabilized alpha-helix of BCL-2 domains (SAHBs) that directly initiate BAX-mediated mitochondrial apoptosis. Here we demonstrate by NMR analysis that BIM SAHB binds BAX at an interaction site that is distinct from the canonical binding groove characterized for anti-apoptotic proteins. The specificity of the human BIM-SAHB-BAX interaction is highlighted by point mutagenesis that disrupts functional activity, confirming that BAX activation is initiated at this novel structural location. Thus, we have now defined a BAX interaction site for direct activation, establishing a new target for therapeutic modulation of apoptosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597110/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597110/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gavathiotis, Evripidis -- Suzuki, Motoshi -- Davis, Marguerite L -- Pitter, Kenneth -- Bird, Gregory H -- Katz, Samuel G -- Tu, Ho-Chou -- Kim, Hyungjin -- Cheng, Emily H-Y -- Tjandra, Nico -- Walensky, Loren D -- 5P01CA92625/CA/NCI NIH HHS/ -- 5R01CA125562/CA/NCI NIH HHS/ -- 5R01CA50239/CA/NCI NIH HHS/ -- K99 HL095929/HL/NHLBI NIH HHS/ -- K99 HL095929-01A1/HL/NHLBI NIH HHS/ -- K99 HL095929-02/HL/NHLBI NIH HHS/ -- R00 HL095929/HL/NHLBI NIH HHS/ -- R01 CA050239/CA/NCI NIH HHS/ -- R01 CA125562/CA/NCI NIH HHS/ -- R01 CA125562-02/CA/NCI NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2008 Oct 23;455(7216):1076-81. doi: 10.1038/nature07396.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatric Oncology and the Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18948948" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis ; Apoptosis Regulatory Proteins/chemistry/metabolism ; BH3 Interacting Domain Death Agonist Protein/metabolism ; Cell Line ; *Gene Expression Regulation ; Humans ; Membrane Proteins/chemistry/metabolism ; Mice ; Mutagenesis, Site-Directed ; Mutation/genetics ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Proto-Oncogene Proteins/chemistry/metabolism ; Sequence Alignment ; bcl-2-Associated X Protein/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1990-08-10
    Description: The interaction of the T cell receptor for antigen (TCR) with its antigen-major histocompatibility complex ligand is difficult to study because both are cell surface multimers. The TCR consists of two chains (alpha and beta) that are complexed to the five or more nonpolymorphic CD3 polypeptides. A soluble form of the TCR was engineered by replacing the carboxyl termini of alpha and beta with signal sequences from lipid-linked proteins, making them susceptible to enzymatic cleavage. In this manner, TCR heterodimers can be expressed independently of the CD3 polypeptides and in significant quantities (0.5 milligram per week). This technique seems generalizable to biochemical and structural studies of many other cell surface molecules as well.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, A Y -- Devaux, B -- Green, A -- Sagerstrom, C -- Elliott, J F -- Davis, M M -- New York, N.Y. -- Science. 1990 Aug 10;249(4969):677-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University School of Medicine, CA 94305-5402.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1696397" target="_blank"〉PubMed〈/a〉
    Keywords: Alkaline Phosphatase/genetics ; Amino Acid Sequence ; Animals ; Antigens, CD3 ; Antigens, CD55 ; Antigens, Differentiation, T-Lymphocyte/genetics ; Cell Line ; Complement Inactivator Proteins/genetics ; Female ; Humans ; Macromolecular Substances ; Membrane Proteins/genetics ; Molecular Sequence Data ; Placenta/enzymology ; Pregnancy ; Protein Sorting Signals/genetics ; Receptors, Antigen, T-Cell/*genetics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1990-03-02
    Description: Cold-sensitive mutations in the SPB genes (spb1-spb7) of Saccharomyces cerevisiae suppress the inhibition of translation initiation resulting from deletion of the poly(A)-binding protein gene (PAB1). The SPB4 protein belongs to a family of adenosine triphosphate (ATP)-dependent RNA helicases. The aberrant production of 25S ribosomal RNA (rRNA) occurring in spb4-1 mutants or the deletion of SPB2 (RPL46) permits the deletion of PAB1. These data suggest that mutations affecting different steps of 60S subunit formation can allow PAB-independent translation, and they indicate that further characterization of the spb mutations could lend insight into the biogenesis of the ribosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sachs, A B -- Davis, R W -- R37 GM 21891/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Mar 2;247(4946):1077-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Stanford Medical Center, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2408148" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Carrier Proteins/genetics/metabolism ; DEAD-box RNA Helicases ; Molecular Sequence Data ; Mutation ; Poly(A)-Binding Proteins ; *Protein Biosynthesis ; RNA Nucleotidyltransferases/genetics/*metabolism ; RNA Processing, Post-Transcriptional ; RNA, Fungal/genetics/metabolism ; RNA, Ribosomal/genetics/*metabolism ; Ribosomal Proteins/genetics/*metabolism ; Ribosomes/*metabolism ; Saccharomyces cerevisiae/enzymology/*genetics ; *Saccharomyces cerevisiae Proteins ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1991-09-23
    Description: The Rel-associated protein pp40 is functionally related to I kappa B, an inhibitor of the transcription factor NF-kappa B. Purified pp40 inhibits the DNA binding activity of the NF-kappa B protein complex (p50:p65 heterodimers), p50:c-Rel heteromers, and c-Rel homodimers. The sequence of the complementary DNA encoding pp40 revealed similarity to the gene encoding MAD-3, a protein with mammalian I kappa B-like activity. Protein sequencing of I kappa B purified from rabbit lung confirmed that MAD-3 encodes a protein similar to I kappa B. The sequence similarity between MAD-3 and pp40 includes a casein kinase II and consensus tyrosine phosphorylation site, as well as five repeats of a sequence found in the human erythrocyte protein ankyrin. These results suggest that rel-related transcription factors, which are capable of cytosolic to nuclear translocation, may be held in the cytosol by interaction with related cytoplasmic anchor molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, N -- Ghosh, S -- Simmons, D L -- Tempst, P -- Liou, H C -- Baltimore, D -- Bose, H R Jr -- CA09583/CA/NCI NIH HHS/ -- CA2616/CA/NCI NIH HHS/ -- CA33192/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1991 Sep 13;253(5025):1268-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Texas, Austin 78712.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1891714" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cells, Cultured ; Chick Embryo ; Cloning, Molecular ; DNA Probes ; Molecular Sequence Data ; NF-kappa B/*antagonists & inhibitors ; Oligonucleotide Probes ; Oncogene Proteins v-rel ; Open Reading Frames ; Phosphoproteins/*genetics/metabolism ; Protein-Tyrosine Kinases/antagonists & inhibitors ; RNA, Messenger/genetics ; Retroviridae Proteins, Oncogenic/*antagonists & inhibitors ; Sequence Homology, Nucleic Acid ; Transcription Factors/*antagonists & inhibitors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1991-05-03
    Description: The molecular cloning of the complementary DNA coding for a 90-kilodalton fragment of tensin, an actin-binding component of focal contacts and other submembraneous cytoskeletal structures, is reported. The derived amino acid sequence revealed the presence of a Src homology 2 (SH2) domain. This domain is shared by a number of signal transduction proteins including nonreceptor tyrosine kinases such as Abl, Fps, Src, and Src family members, the transforming protein Crk, phospholipase C-gamma 1, PI-3 (phosphatidylinositol) kinase, and guanosine triphosphatase-activating protein (GAP). Like the SH2 domain found in Src, Crk, and Abl, the SH2 domain of tensin bound specifically to a number of phosphotyrosine-containing proteins from v-src-transformed cells. Tensin was also found to be phosphorylated on tyrosine residues. These findings suggest that by possessing both actin-binding and phosphotyrosine-binding activities and being itself a target for tyrosine kinases, tensin may link signal transduction pathways with the cytoskeleton.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S -- Lu, M L -- Lo, S H -- Lin, S -- Butler, J A -- Druker, B J -- Roberts, T M -- An, Q -- Chen, L B -- GM 22289/GM/NIGMS NIH HHS/ -- GM 38318/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 May 3;252(5006):712-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cellular and Molecular Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1708917" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Chick Embryo ; Cloning, Molecular ; Cytoskeletal Proteins/*chemistry/genetics/metabolism ; DNA/genetics ; Fluorescent Antibody Technique ; Immunoblotting ; *Microfilament Proteins ; Molecular Sequence Data ; Peptide Fragments/genetics ; Phosphotyrosine ; Protein-Tyrosine Kinases/genetics ; Sequence Homology, Nucleic Acid ; Signal Transduction ; Tyrosine/analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1991-07-05
    Description: Although neurotrophic factors were originally isolated on the basis of their ability to support the survival of neurons, these molecules are now thought to influence many aspects of the development and maintenance of the nervous system. Identifying the receptors for these neurotrophic factors should aid in identifying the cells on which these factors act and in understanding their precise mechanisms of action. A "tagged-ligand panning" procedure was used to clone a receptor for ciliary neurotrophic factor (CNTF). This receptor is expressed exclusively within the nervous system and skeletal muscle. The CNTF receptor has a structure unrelated to the receptors utilized by the nerve growth factor family of neurotrophic molecules, but instead is most homologous to the receptor for a cytokine, interleukin-6. This similarity suggestes that the CNTF receptor, like the interleukin-6 receptor, requires a second, signal-transducing component. In contrast to all known receptors, the CNTF receptor is anchored to cell membranes by a glycosyl-phosphatidylinositol linkage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S -- Aldrich, T H -- Valenzuela, D M -- Wong, V V -- Furth, M E -- Squinto, S P -- Yancopoulos, G D -- New York, N.Y. -- Science. 1991 Jul 5;253(5015):59-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1648265" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Blotting, Northern ; Cell Line ; Cloning, Molecular ; Electrophoresis, Agar Gel ; Gene Expression ; Humans ; In Vitro Techniques ; Molecular Sequence Data ; Muscles/metabolism ; Nervous System/metabolism ; Neuroblastoma/metabolism ; Rats ; Receptor, Ciliary Neurotrophic Factor ; Receptors, Cell Surface/blood/*genetics ; Sequence Homology, Nucleic Acid ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1990-05-25
    Description: Tumor necrosis factor alpha and beta (TNF-alpha and TNF-beta) bind surface receptors on a variety of cell types to mediate a wide range of immunological responses, inflammatory reactions, and anti-tumor effects. A cDNA clone encoding an integral membrane protein of 461 amino acids was isolated from a human lung fibroblast library by direct expression screening with radiolabeled TNF-alpha. The encoded receptor was also able to bind TNF-beta. The predicted cysteine-rich extracellular domain has extensive sequence similarity with five proteins, including nerve growth factor receptor and a transcriptionally active open reading frame from Shope fibroma virus, and thus defines a family of receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, C A -- Davis, T -- Anderson, D -- Solam, L -- Beckmann, M P -- Jerzy, R -- Dower, S K -- Cosman, D -- Goodwin, R G -- New York, N.Y. -- Science. 1990 May 25;248(4958):1019-23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunex Corporation, Seattle, WA 98101.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2160731" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Blotting, Northern ; Cloning, Molecular ; DNA/genetics ; Humans ; Membrane Proteins/genetics ; Molecular Sequence Data ; Multigene Family ; Receptors, Cell Surface/*genetics ; Receptors, Tumor Necrosis Factor ; Tumor Necrosis Factor-alpha/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...