ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
Collection
Years
Year
  • 1
    Publication Date: 2004-11-16
    Description: AIDS remains a significant health problem worldwide despite the advent of highly active antiretroviral therapy (HAART). Although substantial efforts have been made to develop a vaccine there is still no cure and alternative strategies are needed to treat HIV infection and to control its spread. Our goal is to evaluate lentiviral vectors that inhibit HIV replication by RNA interference (RNAi) in a non-human primate SHIV model to develop a hematopoietic stem cell (HSC) gene therapy for AIDS. SHIV89.6 P is a chimeric virus comprised of an SIV genome that contains the tat, rev and env genes of HIV and infects both T lymphocytes and macrophages. Infection of non-human primates with SHIV89.6P results in significant decreases in CD4+ T cells as early as 4 weeks post infection, and is currently the best large animal model available to test gene therapy strategies for AIDS. We present here data showing efficient transduction of M. nemestrina CD34+ cells with an HIV-based lentiviral vector and RNAi-mediated inhibition of SHIV89.6 P replication in a hybrid T/B lymphocyte cell line (CEMx174). Although others reported a block to transduction of M. mulatta CD34+ cells with an HIV-based lentiviral vector, we observed efficient transduction rates (» 50%) of M. nemestrina CD34+ cells, comparable to transduction rates observed in human CD34+ cells (» 60%). To determine effectiveness of anti tat/rev shRNA to inhibit SHIV89.6P in vitro, a human T cell/B cell hybrid cell line (CEMx174) was transduced with a lentiviral vector expressing a short-hairpin RNA (shRNA) targeted to both HIV tat and rev sequences that also contained either a GFP reporter gene or a MGMT(G156A) resistance gene at MOIs of 1.3 and 3 respectively. Polyclonal populations of CEMx174 cells transduced with the GFP and MGMT(G156A) vectors were challenged with a 2.15x103 TCID50 dose of SHIV 89.6P. One week post challenge, expression of both tat and rev transcripts was reduced 88% and 97% respectively in these cultures as measured by real-time PCR. In summary, we have shown efficient HIV-based lentiviral transduction of M. nemestrina cells and efficient inhibition of SHIV infection by shRNA against HIV tat and rev thus providing a useful model to test lentiviral-mediated anti-HIV RNAi stem cell gene therapy in vivo.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-01
    Description: β-thalassemias are the most common single gene disorders and are potentially amenable to gene therapy. However, retroviral vectors carrying the human β-globin cassette have been notoriously unstable. Recently, considerable progress has been made using lentiviral vectors, which stably transmit the β-globin expression cassette. Thus far, mouse studies have shown correction of the β-thalassemia intermedia phenotype and a partial, variable correction of β-thalassemia major phenotype. We tested a lentiviral vector carrying the human β-globin expression cassette flanked by a chromatin insulator in transfusion-dependent human thalassemia major, where it would be ultimately relevant. We demonstrated that the vector expressed normal amounts of human β-globin in erythroid cells produced in in vitro cultures for unilineage erythroid differentiation. There was restoration of effective erythropoiesis and reversal of the abnormally elevated apoptosis that characterizes β-thalassemia. The gene-corrected human β-thalassemia progenitor cells were transplanted into immune-deficient mice, where they underwent normal erythroid differentiation, expressed normal levels of human β-globin, and displayed normal effective erythropoiesis 3 to 4 months after xenotransplantation. Variability of β-globin expression in erythroid colonies derived in vitro or from xenograft bone marrow was similar to that seen in normal controls. Our results show genetic modification of primitive progenitor cells with correction of the human thalassemia major phenotype.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...