ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (4)
Collection
Years
Year
  • 1
    Publication Date: 2002-02-01
    Print ISSN: 0006-3495
    Electronic ISSN: 1542-0086
    Topics: Biology , Physics
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-03-01
    Description: ▪ Abstract  A surprising variety of ion channels found in a wide range of species from Homo to Paramecium use calmodulin (CaM) as their constitutive or dissociable Ca2+-sensing subunits. The list includes voltage-gated Ca2+ channels, various Ca2+- or ligand-gated channels, Trp family channels, and even the Ca2+-induced Ca2+ release channels from organelles. Our understanding of CaM chemistry and its relation to enzymes has been instructive in channel research, yet the intense study of CaM regulation of ion channels has also revealed unexpected CaM chemistry. The findings on CaM channel interactions have indicated the existence of secondary interaction sites in addition to the primary CaM-binding peptides and the functional differences between the N- and C-lobes of CaM. The study of CaM in channel biology will figure into our understanding on how this uniform, universal, vital, and ubiquitous Ca2+ decoder coordinates the myriad local and global cell physiological transients.
    Print ISSN: 0066-4278
    Electronic ISSN: 1545-1585
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 47 (2000), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: . Paramecium continues to be used to study motility, behavior, exocytosis, and the relationship between the germ and the somatic nuclei. Recent progress in molecular genetics is described. Toward cloning genes that correspond to mutant phenotypes, a method combining complementation with microinjected DNA and library sorting has been used successfully in cloning several novel genes crucial in membrane excitation and in trichocyst discharge. Paramecium transformation en masse has now been shown by using electroporation or bioballistics. Gene silencing has also been discovered in Paramecium, recently. Some 200 Paramecium genes, full length or partial, have already been cloned largely by homology. Generalizing the use of gene silencing and related reverse-genetic techniques would allow us to correlate these genes with their function in vivo.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 64 (2002), S. 289-311 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract A surprising variety of ion channels found in a wide range of species from Homo to Paramecium use calmodulin (CaM) as their constitutive or dissociable Ca2+-sensing subunits. The list includes voltage-gated Ca2+ channels, various Ca2+- or ligand-gated channels, Trp family channels, and even the Ca2+-induced Ca2+ release channels from organelles. Our understanding of CaM chemistry and its relation to enzymes has been instructive in channel research, yet the intense study of CaM regulation of ion channels has also revealed unexpected CaM chemistry. The findings on CaM channel interactions have indicated the existence of secondary interaction sites in addition to the primary CaM-binding peptides and the functional differences between the N- and C-lobes of CaM. The study of CaM in channel biology will figure into our understanding on how this uniform, universal, vital, and ubiquitous Ca2+ decoder coordinates the myriad local and global cell physiological transients.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...