ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (7)
  • 1
  • 2
    facet.materialart.
    Unknown
    Springer
    In:  In: High Performance Computing in Science and Engineering '01. , ed. by Krause, E. and Jäger, W. Springer, Berlin, Germany, pp. 396-405. ISBN 3-540-42675-2
    Publication Date: 2020-05-07
    Description: The ocean takes up a large fraction of the pertubation C02 that enters the atmosphere by human activity. A realistic representation of this uptake in numerical models is essential for future climate studies. Uptake of C02 or other atmospheric trace gases is strongly influenced by oceanic physical variability at spatial scales between 20 and 100 km. Our main goal is to study the effect of this mesoscale variability on the cumulative uptake of anthropogenic C02 and chlorofluorocarbons using an existing model of the ocean circulation in the Atlantic that resolves a significant part of that variability explicitly because of its grid spacing of about 20 km. Results are compared with simulated trace gas distribution obtained from a model with coarser resolution.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 108 (C5). p. 3159.
    Publication Date: 2018-04-18
    Description: A series of numerical experiments with models of the Atlantic Ocean is analyzed with respect to the uptake of CFC‐11 and its export from the subpolar gyre with the North Atlantic Deep Water. We discuss the influence of parameterizations for air‐sea gas exchange and subgrid‐scale processes on the rate of CFC‐11 that enters the North Atlantic Ocean and its dependence on horizontal grid spacing in models from medium (4/3°) to eddy‐permitting (1/3°) horizontal resolution. Model results are compared with observational estimates of tracer inventories in order to evaluate to what degree the simulations capture realistic CFC distributions. While higher resolution is needed to model details of the CFC distribution, for example, in the Deep Western Boundary Current, the medium resolution models are able to simulate quantitatively satisfying CFC inventories in different water masses. Nevertheless, the inventories derived from the medium‐resolution experiments show a critical dependence on details of the parameterization of the mixing effect of mesoscale eddies and on the representation of bottom boundary layer processes. The numerical representation of eddy activity turns out to be of crucial importance in order to obtain modeled CFC inventories in agreement with observed values, which can be achieved either by carefully choosing the mixing parameterization or by applying higher horizontal resolution. The ratio of CFC‐11 being exported southward from the subpolar North Atlantic to the total CFC‐11 inventory in NADW does not vary significantly over the suite of model experiments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-16
    Description: The recovery of the oceanic flow field from in situ data is one ofthe oldest problems of modern oceanography. In this study, astationary, non-linear inverse model is used to estimate a meangeostrophic flow field from hydrographic data along a hydrographicsection. The model is augmented to improve these estimates withmeasurements of the absolute sea-surface height by satellitealtimetry. Measurements of the absolute sea-surface height includeestimates of an equipotential surface, the geoid. Compared tooceanographic measurements, the geoid is known only to low accuracyand spatial resolution, which restricts the use of sea-surface heightdata to applications of large scale phenomena of the circulation.Dedicated satellite missions that are designed for high precision,high resolution geoid models are planned and/or in preparation. Ourstudy, which relies on twin experiments, assesses the importantcontribution of improved geoid models to estimating the mean flowfield along a hydrographic section. When the sea-surface height dataare weighted according to the error estimates of the future highlyaccurate geoid models GRACE (Gravity Recovery And Climate Experiment)and GOCE (Gravity field and steady-state Ocean Circulation Explorer)integrated fluxes of mass and temperature can be determined with anaccuracy that is improved over the case with no sea-surface heightdata by up to 55%. With the error estimates of the currently bestgeoid model EGM96, the reduction of the estimated flux errors does notexceed 18%.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  EPIC3High Performance Computing in Science and Engineering '01, Springer Verlag, Berlin, pp. 396-405, ISBN: 3-540-42675-2
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  EPIC3Developments in Teracomputing, Ed. W. Zwieflhofer, N. Kreitz, World Scientific Publishing, Singapore. 2001, pp. 201-213, ISBN: 981-02-4761-3
    Publication Date: 2019-07-16
    Description: In coupled models the performance of massively parallelmodel components strongly suffers from sequential coupling overhead.A coupling interface for parallel interpolation and parallelcommunication is urgently required to work out this performancedilemma. Performance measurements for a parallel coupling ofparallel regional atmosphere and ocean models are presented for theCRAY-T3E-1200 using the coupling library MpCCI. The differentrotated grids of the models MOM2 (ocean-seaice) and PARHAM(atmosphere) are configured for the arctic region. In particular, asunderlying MPI-implementations CRAY-MPI and MetaMPI are compared intheir performance for some relevant massive parallel configurations.It is demonstrated that an overhead of 10\% for coupling, includinginterpolation and communication, can be achieved. Perspectives for acommon coupling specification are given enabling the modelingcommunity to easily exchange model components as well as couplingsoftware, making model components reusable in other couplingprojects and on next generation computing architectures. Futureapplications of parallel coupling software in parallel nesting anddata assimilation are discussed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...