ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-02-21
    Description: To achieve X-chromosome dosage compensation, organisms must distinguish X chromosomes from autosomes. We identified multiple, cis-acting regions that recruit the Caenorhabditis elegans dosage compensation complex (DCC) through a search for regions of X that bind the complex when detached from X. The DCC normally assembles along the entire X chromosome, but not all detached regions recruit the complex, despite having genes known to be dosage compensated on the native X. Thus, the DCC binds first to recruitment sites, then spreads to neighboring X regions to accomplish chromosome-wide gene repression. From a large chromosomal domain, we defined a 793-base pair fragment that functions in vivo as an X-recognition element to recruit the DCC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Csankovszki, Gyorgyi -- McDonel, Patrick -- Meyer, Barbara J -- F32-GM065007/GM/NIGMS NIH HHS/ -- R37-GM30702/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 20;303(5661):1182-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976312" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Base Sequence ; Binding Sites ; Caenorhabditis elegans/*genetics/metabolism ; Caenorhabditis elegans Proteins/*metabolism ; Carrier Proteins/metabolism ; Chromosomes/metabolism ; Cosmids ; DNA-Binding Proteins/metabolism ; Disorders of Sex Development ; *Dosage Compensation, Genetic ; Female ; In Situ Hybridization, Fluorescence ; Male ; Models, Genetic ; Molecular Sequence Data ; Nuclear Proteins/metabolism ; Repetitive Sequences, Nucleic Acid ; X Chromosome/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...