ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1)
Collection
Years
Year
  • 1
    Publication Date: 2001-07-01
    Description: Gabbro and leucogabbro are volumetrically important rocks in the Nordingrå rapakivi complex, East Central Sweden. Plagioclase, ortho- and clinopyroxenes, and olivine dominate the gabbro. Perthitic orthoclase and quartz are interstitial in relation to the major minerals. The present work is based on 232 major-element and a large number of trace element analyses together with 15 whole rock Sm–Nd isotope analyses of the Nordingrå gabbroic rocks. εNd(T) values are negative, −1.1 to −3.2; the most negative values come from the gabbro. Most rocks are enriched in iron, some extremely enriched; none represent primitive mantle melts. The range of Mg-numbers is the same in the gabbro and the leucogabbro. Plots of the Ni-content vs. the Mg-number are scattered, but there is a positive correlation between these two parameters. The primary mantle-normalized ratios between similar trace elements are normally strongly different from one. Values larger as well as smaller than one are found for the same ratio in different rocks. The rare earth elements are only weakly fractionated with small Eu anomalies, negative for the gabbros and positive for the leucogabbros. The primary magma of the Nordingrå gabbro-anorthosite is thought to have been derived from a mildly depleted mantle source. Variations in the degree of partial melting of a reasonably homogeneous enriched mantle do not explain the observed chemical evolution. Crystal differentiation can account for some geochemical features, especially the Fe-enrichment. Crustal contamination is required by other characteristics as, for example, the negative εNd(T) values and the irregular and sometimes high primary-mantle normalized incompatible trace-element ratios. Al-rich relic material from the formation of the rapakivi granite melt is another source of assimilation. Most probably contaminants are heterogeneous, including undepleted crust (represented, for example, by early Svecofennian and Archaean granitoids), depleted crust (restitic after rapakivi magma extraction), and to some degree the associated rapakivi magma itself. Significant parts of this crust should be Archaean in age.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...