ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
Collection
Years
Year
  • 1
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Piriformospora indica, an endophytic fungus of the Sebacinaceae family, colonizes the roots of a wide variety of plant species and promotes their growth, in a manner similar to arbuscular mycorrhizal fungi. The results of the present study demonstrate that the fungus interacts also with the non-mycorrhizal host Arabidopsis thaliana and promotes its growth. The interaction is detectable by the appearance of a strong autofluorescence in the roots, followed by the colonization of root cells by fungal hyphae and the generation of chlamydospores. Promotion of root growth was detectable even before noticeable root colonization. Membrane-associated proteins from control roots and roots after cultivation with P. indica were separated by two-dimensional gel-electrophoresis and identified by electrospray ionization mass spectrometry and tandem mass spectrometry. Differences were found in the expression of glucosidase II, beta-glucosidase PYK10, two glutathione-S-transferases and several so-far uncharacterized proteins. Based on conserved domains present in the latter proteins their possible roles in plant–microbe interaction are predicted. Taken together, the present results suggest that the interaction of Arabidopsis thaliana with P. indica is a powerful model system to study beneficial plant–microbe interaction at the molecular level. Furthermore, the successful accommodation of the fungus in the root cells is preceded by protein modifications in the endoplasmatic reticulum as well as at the plasma membrane of the host.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Molecular microbiology 45 (2002), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: During its haploid phase the dimorphic fungus Ustilago maydis grows vegetatively by budding. We have identified two genes, don1 and don3, which control the separation of mother and daughter cells. Mutant cells form tree-like clusters in liquid culture and grow as ring-like (donut-shaped) colonies on solid medium. In wild-type U. maydis cells, two distinct septa are formed during cytokinesis and delimit a fragmentation zone. Cells defective for either don1 or don3 display only a single septum and fail to complete cell separation. don1 encodes a guanine nucleotide exchange factor (GEF) of the Dbl family specific for Rho/Rac GTPases. Don3 belongs to the germinal-centre-kinase (GC) subfamily of Ste20-like protein kinases. We have isolated the U. maydis homologues of the small GTP binding proteins Rho2, Rho3, Rac1 and Cdc42. Out of these, only Cdc42 interacts specifically with Don1 and Don3 in the yeast two-hybrid system. We propose that Don1 and Don3 regulate the initiation of the secondary septum, which is required for proper cell separation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...