ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (16)
  • 1
    Publication Date: 2003-11-01
    Print ISSN: 0034-4257
    Electronic ISSN: 1879-0704
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2019-07-18
    Description: Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities can place confidence in the imagery they use and can fully understand its properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, the NASA Stennis Space Center (SSC) Earth Science Applications (ESA) directorate,through the Joint Agency for Commercial Imagery Evaluation (JACIE) framework, established a commercial imaging satellite radiometric calibration team consisting of two groups: 1) NASA SSC ESA, supported by South Dakota State University, and 2) the University of Arizona Remote Sensing Group. The two groups determined the absolute radiometric calibration coefficients of the Digital Globe 4-band, 2.4-m QuickBird multispectral product covering the visible through near-infrared spectral region. For a 2-year period beginning in 2002, both groups employed some variant of a reflectance-based vicarious calibration approach, which required ground-based measurements coincident with QuickBird image acquisitions and radiative transfer calculations. The groups chose several study sites throughout the United States that covered nearly the entire dynamic range of the QuickBird sensor. QuickBird at-sensor radiance values were compared with those estimated by the two independent groups to determine the QuickBird sensor's radiometric accuracy. Approximately 20 at-sensor radiance estimates were vicariously determined each year. The estimates were combined to provide a high-precision radiometric gain calibration coefficient. The results of this evaluation provide the user community with an independent assessment of the QuickBird sensor's absolute calibration and stability over the 2-year period. While the techniques and method described reflect those developed at the NASA SSC, the results of both JACIE team groups are included in this paper.
    Keywords: Earth Resources and Remote Sensing
    Type: SSTI-2220-0011-ESAD
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The Scientific Data Purchase (SDP) project acquires science data from commercial sources. It is a demonstration project to test a new way of doing business, tap new sources of data, support Earth science research, and support the commercial remote sensing industry. Phase I of the project reviews simulated/prototypical data sets from 10 companies. Phase II of the project is a 3 year purchase/distribution of select data from 5 companies. The status of several SDP projects is reviewed in this viewgraph presentation, as is the SDP process of tasking, verification, validation, and data archiving. The presentation also lists SDP results for turnaround time, metrics, customers, data use, science research, applications research, and user feedback.
    Keywords: Earth Resources and Remote Sensing
    Type: SE-2001-07-00039-SSC , Applications of Geospatial Technology in Forestry: A Seminar for Members of the Society of American Foresters; Jul 26, 2001; Bay Saint Louis, MS; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: Scientists at NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center. This site enables the in-flight characterization of remote sensing systems and the data they acquire. The data are predominantly acquired by commercial, high spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active LIDAR systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible through long-wave infrared remote sensing systems and a description of the Stennis characterization. Other topics discussed include: 1) The use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations; 2) Additional sites used for radiometric, geometric, and spatial characterization in the continental United States; 3) The need for a standardized technique to be adopted by CEOS and other organizations.
    Keywords: Earth Resources and Remote Sensing
    Type: NASA/SE-2002-03-00019-SSC , ISPRS Commission I Mid-Term Symposium; Nov 10, 2002 - Nov 15, 2002; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities can place confidence in the imagery they use and can fully understand its properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other system. In addition, the user community has little or no insight into the design and operation of commercial sensors or into the methods involved in generating commercial products. To address this calibration need, the NASA Stennis Space Center (SSC) Earth Science Applications (ESA) Directorate established a commercial satellite imaging radiometric calibration team consisting of three independent groups: NASA, SSC,ESA, the University of Arizona Remote Sensing Group, and South Dacota State University. Each group determined the absolute radiometric calibration coefficients of the Space Imaging IKONOS 4-band, 4 m multispectral product covering the visible through near-infrared spectral region. For a three year period beginning in 2000, each team employed some variant of a reflectance-based vicarious calibration approach, requiring ground-based measurements coincident with IKONOS image acquisitions and radiative transfer calculations. Several study sites throughout the United States were employed that covered nearly the entire dynamic range of the IKONOS sensor. IKONOS at-sensor radiance values were compared to those estimated by each independent group to determine the IKONOS sensor's radiometric accuracy and stability. Over 10 individual vicariously determined at-sensor radiance estimates were used each year. When combined, these estimates provided a high-precision radiometric gain calibration coefficient. No significant calibration offset was observed. The results of this evaluation provide the scientific community with an independent assessment of the IKONOS sensor's absolute calibration and temporal stability over the 3-year period. While the techniques and method described in this paper reflect those developed at the NASA SSC, the results of the entire team are included.
    Keywords: Instrumentation and Photography
    Type: SE-2003-09-00085-SSC , ISPRS Commission I/Working Group 2 International Workshop on Radiometric and Geometric Calibration; Dec 02, 2003 - Dec 05, 2003; Gulfport, MS; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-10
    Description: In an effort to more full explore the potential of commercial remotely sensed land data sources, the NASA Earth Science Enterprise (ESE) implemented an experimental Scientific Data Purchase (SDP) that solicited bids from the private sector to meet ESE-user data needs. The images from the Space Imaging IKONOS system provided a particularly good match to the current ESE missions such as Terra and Landsat 7 and therefore serve as a focal point in this analysis.
    Keywords: Spacecraft Design, Testing and Performance
    Type: SE-2003-09-00067-SSC
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-11
    Description: NASA at Stennis Space Center (SSC) established a Space Act Agreement with Orbital Sciences Corporation (OSC) and ORBIMAGE Inc. to collaborate on the characterization of the OrbView-3 system and its imagery products and to develop characterization techniques further. In accordance with the agreement, NASA performed an independent radiometric, spatial, and geopositional accuracy assessment of OrbView-3 imagery acquired before completion of the system's initial on-orbit checkout. OSC acquired OrbView-3 imagery over SSC from July 2003 through January 2004, and NASA collected ground reference information coincident with many of these acquisitions. After evaluating all acquisitions, NASA deemed two multispectral images and five panchromatic images useful for characterization. NASA then performed radiometric, spatial, and geopositional characterizations.
    Keywords: Earth Resources and Remote Sensing
    Type: SSTI-2220-0018
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-10
    Description: A radiometric characterization of Space Imaging's IKONOS 4-m multispectral imagery has been performed by a NASA funded team from the John C. Stennis Space Center (SSC), the University of Arizona Remote Sensing Group (UARSG), and South Dakota State University (SDSU). Both intrinsic radiometry and the effects of Space Imaging processing on radiometry were investigated. Relative radiometry was examined with uniform Antarctic and Saharan sites. Absolute radiometric calibration was performed using reflectance-based vicarious calibration methods on several uniform sites imaged by IKONOS, coincident with ground-based surface and atmospheric measurements. Ground-based data and the IKONOS spectral response function served as input to radiative transfer codes to generate a Top-of-Atmosphere radiance estimate. Calibration coefficients derived from each vicarious calibration were combined to generate an IKONOS radiometric gain coefficient for each multispectral band assuming a linear response over the full dynamic range of the instrument. These calibration coefficients were made available to Space Imaging, which subsequently adopted them by updating its initial set of calibration coefficients. IKONOS imagery procured through the NASA Scientific Data Purchase program is processed with or without a Modulation Transfer Function Compensation kernel. The radiometric effects of this kernel on various scene types was also investigated. All imagery characterized was procured through the NASA Scientific Data Purchase program.
    Keywords: Earth Resources and Remote Sensing
    Type: SE-2002-08-00057-SSC
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: This viewgraph presentation focuses on the differences in Signal-to-Noise Ratio (SNR) between IKONOS imagery with and without Modulation Transfer Function Correction (MTFC). The researchers used a simulated scene to evaluate the effects of MTFC on SNR. They also used four very uniform IKONOS scenes, two of Antarctica, one of Ivanpah, CA, and one of Mali to estimate SNR.
    Keywords: Earth Resources and Remote Sensing
    Type: SE-2002-03-00020-SSC , High Spatial Resolution Commercial Imagery Workshop - IKONOS; Mar 22, 2002; Reston, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...