ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1)
Collection
Years
Year
  • 1
    Publication Date: 2004-12-01
    Description: Combination of laser and radar aboard an aircraft is used to directly measure long gravity wave surface tilting simultaneously with nadir-viewing microwave backscatter from the sea surface. The presented dataset is extensive, encompassing varied wind conditions over coastal and open-ocean wave regimes. Laser-derived slope statistics and Ka-band (36 GHz) radar backscatter are detailed separately to document their respective variations versus near-surface wind speed. The slope statistics, measured for λ 〉 1–2 m, show good agreement with Cox and Munk's oil-slickened sea measurements. A notable exception is elevated distribution peakedness and an observed wind dependence in this likely proxy for nonlinear wave–wave interactions. Aircraft Ka-band radar data nearly mimic Ku-band satellite altimeter observations in their mean wind dependence. The present calibrated radar data, along with relevant observational and theoretical studies, suggest a large (−5 dB) bias in previous Ka-band results. Next, wave-diverse inland, coastal, and open-ocean observations are contrasted to show wind-independent long-wave slope variance changes of a factor of 2–3, always increasing as one heads to sea. Combined long-wave and radar data demonstrate that this long-wave tilt field variability is largely responsible for radar backscatter variations observed at a given wind speed, particularly at wind speeds below 5–7 m s−1. Results are consistent with, and provide quantititative support for, recent satellite altimeter studies eliciting signatures of long-wave impacts resident in the radar backscatter. Under a quasi-optical scattering assumption, the results illustrate long-wave control on the variance of the total mean square slope parameter due to changes in the directional long-wave spectrum, with high-wavenumbers being relatively unaffected in a mean sense. However, further analysis suggests that for winds above 7 m s−1 the high-wavenumber subrange also varies with change in the longer wave field slope and/or energy, the short gravity wave roughness being measurably greater for smoother seas.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...