ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (25)
Collection
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 3610-3624 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The nonlinear dynamics of a typical dynamo mode in a reversed field pinch, under the action of the braking torque due to eddy currents excited in a resistive vacuum vessel and the locking torque due to a resonant error-field, is investigated. A simple set of phase evolution equations for the mode is derived: these equations represent an important extension of the well-known equations of Zohm et al. [Europhys. Lett. 11, 745 (1990)] which incorporate a self-consistent calculation of the radial extent of the region of the plasma which corotates with the mode; the width of this region being determined by plasma viscosity. Using these newly developed equations, a comprehensive theory of the influence of a resistive vacuum vessel on error-field locking and unlocking thresholds is developed. Under certain circumstances, a resistive vacuum vessel is found to strongly catalyze locked mode formation. Hopefully, the results obtained in this paper will allow experimentalists to achieve a full understanding of why the so-called "slinky mode" locks in some reversed field pinch devices, but not in others. The locking of the slinky mode is currently an issue of outstanding importance in reversed field pinch research. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 871-884 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A quadratic dispersion relation is derived which governs the feedback-modified stability of the resistive shell mode in a large-aspect ratio, low-β tokamak plasma. The effectiveness of a given feedback scheme is determined by a single parameter, α0, which measures the coupling of different poloidal harmonics due to the nonsinusoidal nature of the feedback currents. Feedback fails when this parameter becomes either too positive or too negative. Feedback schemes can be classified into three groups, depending on the relative values of the poloidal mode number, m0, of the intrinsically unstable resistive shell mode, and the number, M, of feedback coils in the poloidal direction. Group I corresponds to M≤2m0 and M≠m0; group II corresponds to M=m0; finally, group III corresponds to M〉2m0. The optimal group I feedback scheme is characterized by extremely narrow detector loops placed as close as possible to the plasma, i.e., well inside the resistive shell. Of course, such a scheme would be somewhat impractical. The optimal group II feedback scheme is characterized by large, nonoverlapping detector loops, and moderately large, nonoverlapping feedback coils. Such a scheme is 100% effective (i.e., it makes the resistive shell appear superconducting) when the detector loops are located just outside the shell. Unfortunately, the scheme only works efficiently for resistive shell modes possessing one particular poloidal mode number. The optimal group III feedback scheme is characterized by slightly overlapping detector loops, and strongly overlapping feedback coils. Such a scheme is 100% effective when the detector loops are located just outside the shell. In addition, the scheme works efficiently for resistive shell modes with a range of different poloidal mode numbers. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 2760-2770 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: It is demonstrated that a magnetic island chain formed by a saturated tearing instability in a toroidal magnetic fusion device can lock to a special class of externally generated magnetic perturbation in a stabilizing phase. The theoretical apparatus needed to design such perturbations is outlined. These special perturbations—which are termed "designer" error fields—could be used to control the amplitudes of tearing modes in toroidal magnetic fusion experiments without the requirement of fast phase modulation. This type of control would be far more feasible in a reactor environment than conventional active feedback control via external magnetic perturbations. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 4983-4995 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An analysis is presented of the dynamics of a helical magnetic island chain embedded in a toroidal plasma, in the presence of an externally imposed, rotating, magnetic perturbation of the same helicity. Calculations are carried out in the large aspect-ratio, zero-β, resistive magnetohydrodynamical limit, and incorporate a realistic treatment of plasma viscosity. There are three regimes of operation, depending on the modulation frequency (i.e., the difference in rotation frequency between the island chain and the external perturbation). For slowly modulated islands, the perturbed velocity profile extends across the whole plasma. For strongly modulated islands, the perturbed velocity profile is localized around the island chain, but remains much wider than the chain. Finally, for very strongly modulated islands, the perturbed velocity profile collapses to a boundary layer on the island separatrix, plus a residual profile which extends a few island widths beyond the separatrix. Analytic expressions are obtained for the perturbed velocity profile, the island equation of motion, and the island width evolution equation in each of these three regimes. The ion polarization correction to the island width evolution equation, which has previously been reported to be stabilizing, is found to be destabilizing in all three regimes. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 9 (2002), S. 3459-3469 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A simple set of evolution equations is derived for the resistive wall mode in a large aspect-ratio, rotating, viscous, tokamak plasma. The equations take into account the nonlinear deceleration of the plasma rotation generated by mode interaction with both the resistive wall and a static error field. Furthermore, the equations are largely able to explain resistive wall mode data recently obtained from the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research (International Atomic Energy Agency, Vienna, 1986), p. 159]. In particular, the role of the error field in triggering plasma deceleration is elucidated. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 4489-4500 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An improved set of island evolution equations is derived that incorporates the latest advances in MHD (magnetohydrodynamical) theory. These equations describe the resistive/viscous-MHD dynamics of a nonlinear magnetic island chain, embedded in a toroidal pinch plasma, in the presence of a programmable, externally applied, resonant magnetic perturbation. A number of interesting example calculations are performed using the new equations. In particular, an investigation is made of a recently discovered class of multiharmonic resonant magnetic perturbations that have the novel property that they can lock resonant island chains in a stabilizing phase. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-07-01
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2002-08-01
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2001-03-01
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2000-12-01
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...