ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Increased atmospheric carbon dioxide supply is predicted to alter plant growth and biomass allocation patterns. It is not clear whether changes in biomass allocation reflect optimal partitioning or whether they are a direct effect of increased growth rates. Plasticity in growth and biomass allocation patterns was investigated at two concentrations of CO2 ([CO2]) and at limiting and nonlimiting nutrient levels for four fast- growing old-field annual species. Abutilon theophrasti, Amaranthus retroflexus, Chenopodium album, and Polygonum pensylvanicum were grown from seed in controlled growth chamber conditions at current (350 μmol mol−1, ambient) and future- predicted (700 μmol mol−1, elevated) CO2 levels. Frequent harvests were used to determine growth and biomass allocation responses of these plants throughout vegetative development. Under nonlimiting nutrient conditions, whole plant growth was increased greatly under elevated [CO2] for three C3 species and moderately increased for a C4 species (Amaranthus). No significant increases in whole plant growth were observed under limiting nutrient conditions. Plants grown in elevated [CO2] had lower or unchanged root:shoot ratios, contrary to what would be expected by optimal partitioning theory. These differences disappeared when allometric plots of the same data were analysed, indicating that CO2-induced differences in root:shoot allocation were a consequence of accelerated growth and development rates. Allocation to leaf area was unaffected by atmospheric [CO2] for these species. The general lack of biomass allocation responses to [CO2] availability is in stark contrast with known responses of these species to light and nutrient gradients. We conclude that biomass allocation responses to elevated atmospheric [CO2] are not consistent with optimal partitioning predictions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 6 (2000), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: We investigated how light and CO2 levels interact to influence growth, phenology, and the physiological processes involved in leaf senescence in red oak (Quercus rubra) seedlings. We grew plants in high and low light and in elevated and ambient CO2. At the end of three years of growth, shade plants showed greater biomass enhancement under elevated CO2 than sun plants. We attribute this difference to an increase in leaf area ratio (LAR) in shade plants relative to sun plants, as well as to an ontogenetic effect: as plants increased in size, the LAR declined concomitant with a decline in biomass enhancement under elevated CO2Elevated CO2 prolonged the carbon gain capacity of shade-grown plants during autumnal senescence, thus increasing their functional leaf lifespan. The prolongation of carbon assimilation, however, did not account for the increased growth enhancement in shade plants under elevated CO2. Elevated CO2 did not significantly alter leaf phenology. Nitrogen concentrations in both green and senesced leaves were lower under elevated CO2 and declined more rapidly in sun leaves than in shade leaves. Similar to nitrogen concentration, the initial slope of A/Ci curves indicated that Rubisco activity declined more rapidly in sun plants than in shade plants, particularly under elevated CO2. Absolute levels of chlorophyll were affected by the interaction of CO2 and light, and chlorophyll content declined to a minimal level in sun plants sooner than in shade plants. These declines in N concentration, in the initial slope of A/Ci curves, and in chlorophyll content were consistent with declining photosynthesis, such that elevated CO2 accelerated senescence in sun plants and prolonged leaf function in shade plants. These results have implications for the carbon economy of seedlings and the regeneration of red oak under global change conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Key words Ontogeny ; Drought response ; Photosynthesis ; Water use efficiency ; Quercus rubra
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  We investigated scaling of physiological parameters between age classes of Quercus rubra by combining in situ field measurements with an experimental approach. In the in situ field study, we investigated changes in drought response with age in seedlings, juveniles, and mature trees of Q. rubra. Throughout the particularly dry summer of 1995 and the unusually wet summer of 1996 in New England, we measured water potential of leaves (ΨLeaf) and gas exchange of plants at three sites at the Harvard Forest in Petersham, Massachusetts. In order to determine what fraction of the measured differences in gas exchange between seedlings and mature trees was due to environment versus ontogeny, an experiment was conducted in which seedlings were grown under light and soil moisture regimes simulating the environment of mature trees. The photosynthetic capacity of mature trees was three-fold greater than that of seedlings during the wet year, and six-fold greater during the drought year. The seedling experiment demonstrated that the difference in photosynthetic capacity between seedlings and mature trees is comprised equally of an environmental component (50%) and an ontogenetic component (50%) in the absence of water limitation. Photosynthesis was depressed more severely in seedlings than in mature trees in the drought year relative to the wet year, while juveniles showed an intermediate response. Throughout the drought, the predawn leaf water potential (ΨPD) of seedlings became increasingly negative (–0.4 to –1.6 MPa), while that of mature trees became only slightly more negative (–0.2 to –0.5 MPa). Again, juveniles showed an intermediate response (–0.25 to –0.8 MPa). During the wet summer of 1996, however, there was no difference in ΨPD between seedlings, juveniles and mature trees. During the dry summer of 1995, seedlings were more responsive to a major rain event than mature trees in terms of ΨLeaf , suggesting that the two age classes depend on different water sources. In all age classes, instantaneous measurements of intrinsic water use efficiency (WUEi), defined as C assimilation rate divided by stomatal conductance, increased as the drought progressed, and all age classes had higher WUEi during the drought year than in the wet year. Mature trees, however, showed a greater ability to increase their WUEi in response to drought. Integrated measurements of WUE from C isotope discrimination (Δ) of leaves indicated higher WUE in mature trees than juveniles and seedlings. Differences between years, however, could not be distinguished, probably due to the strong bias in C isotope fractionation at the time of leaf production, which occurred prior to the onset of drought conditions in 1995. From this study, we arrive at two main conclusions:
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Keywords: Key words Savanna ; Cerrado ; Fire ; Elevated CO2 ; Carbohydrate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The savannas (cerrado) of south-central Brazil are currently subjected to frequent anthropogenic burning, causing widespread reduction in tree density. Increasing concentrations of atmospheric CO2 could reduce the impact of such frequent burning by increasing the availability of nonstructural carbohydrate, which is necessary for resprouting. We tested the hypotheses that elevated CO2 stimulates resprouting and accelerates replenishment of carbohydrate reserves. Using a factorial experiment, seedlings of a common Brazilian savanna tree, Keilmeyera coriacea, were grown at 350 ppm and 700 ppm CO2 and at two nutrient levels. To simulate burning, the plants were either clipped at 15 weeks or were left unclipped. Among unclipped plants, CO2 and nutrients both stimulated growth, with no significant interaction between nutrient and CO2 effects. Among clipped plants, both CO2 and nutrients stimulated resprouting. However, there was a strong interaction between CO2 and nutrient effects, with CO2 having a significant effect only in the presence of high nutrient availability. Under elevated CO2, carbohydrate reserves remained at higher levels following clipping. Root total nonstructural carbohydrate remained above 36% in all treatments, so carbohydrate reserves did not limit regrowth. These results indicate that under elevated CO2 this species may be better able to endure the high frequency of anthropogenic burning in the Brazilian savannas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Key words Elevated CO2 ; Global change ; Alternative feeding ; Herbivory ; Legumes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  This study explored consumption of a generalist herbivore feeding on leaf tissue of various plant species of a calcareous grassland, and tested whether consumption levels and preferences changed when plants were exposed to 5 years of in situ CO2 enrichment. The first part of this experiment tested whether the consumption patterns of slugs (Deroceras reticulatum) observed in single-species feeding tests were altered when slugs were given a choice of food sources. Overall consumption increased 270% when slugs were given a choice, and they preferred having a choice of food sources more than they preferred having any one food source. Surprisingly, slugs consumed fewer legumes and grasses and more non-leguminous forbs when given a choice. In the second part of this experiment, feeding behaviors of slugs in response to elevated CO2 were investigated by feeding them leaves of two legumes, one grass, and a non-leguminous forb (Trifolium medium, Lotus corniculatus, Bromus erectus, and Sanguisorba minor, respectively) in two or four species combinations. In the leguminous species mix, the non-leguminous species mix, and the combined mix (legumes and non-legumes), neither overall consumption by herbivores nor species preference was significantly altered by long-term CO2 enrichment. In the combined species mix, slugs preferred legumes to non-legumes (P=0.012) and exhibited a weak functional group preference shift from non-legumes to legumes (P=0.089) in response to CO2 enrichment. This is the first time such a shift has been observed, and provides evidence that there may be multiple herbivore responses to rising atmospheric CO2 concentrations. Numerous single-species feeding tests using insects have shown that consumption by herbivores may increase when herbivores are fed plants grown in enriched CO2 atmospheres. This study clearly demonstrates the limited applicability of non-choice feeding trials to generalist herbivores in species-rich communities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-05-08
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2002-02-01
    Description: Although plants are sessile organisms, they can forage for resources and avoid neighbors by growing towards areas with high resource availability and reduced competition. Apparently because of this morphological flexibility, tree canopies are rarely positioned directly above their stem bases and are often displaced. To determine if contrasts in light availability lead to the development of canopy displacement, we investigated the responses of tree canopies to the heterogeneous light environments at the edges of six experimental gaps. Canopies and trunks of gap edge trees were mapped, and their spatial distributions were analyzed. We found that tree canopies were displaced towards gap centers. The magnitude and precision of canopy displacement were greater for subcanopy trees than for canopy trees. The magnitude and precision of canopy displacement were generally greater for earlier successional trees and hardwoods than for later successional trees and conifers. Canopy depth was significantly greater on gap-facing sides of trees than on forest-facing sides of trees. Thus, trees along gap edges foraged for light by occupying both horizontal and vertical gap space. This morphological flexibility has implications for individual plant success, as well as forest structure and dynamics.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-07-01
    Description: Competitive interactions among plants are largely determined by spatial proximity. However, despite their sessile nature, plants have the ability to avoid neighbors by growing towards areas with high resource availability and reduced competition. Because of this flexibility, tree canopies are rarely centered directly above their stem bases and are often displaced. We sought to determine how a tree's competitive neighborhood influences its canopy position. In a 0.6-ha temperate forest plot, all trees greater than 10 cm DBH (n = 225) were measured for basal area, height, canopy depth, and trunk position. Canopy extent relative to trunk base was determined in eight subcardinal directions, and this information was used to reconstruct canopy size, shape, and position. We found that trees positioned their canopies away from large neighbors, close neighbors, and shade-tolerant neighbors. Neighbor size, expressed as basal area or canopy area, was the best indication of a neighbor's importance in determining target tree canopy position. As neighborhood asymmetry increased, the magnitude of canopy displacement increased, and the precision with which canopies avoided neighbors increased. Flexibility in canopy shape and position appears to reduce competition between neighbors, thereby influencing forest community dynamics.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2002-02-01
    Description: We used sap flow as a measure of whole-tree function to examine how coniferous and broad-leaved species in mixed temperate forests differ in canopy-level transpiration and photosynthetic rates. We used heat dissipation probes to measure whole-tree sap flow in three species throughout one full year and then combined these measurements with micrometeorological monitoring and leaf-level gas exchange to determine whole-tree carbon gain. Both broad-leaved species (red oak, Quercus rubra L.; red maple, Acer rubrum L.) had two- to four-fold greater annual fluxes of water and carbon on a ground area basis than did the conifer (eastern hemlock, Tsuga canadensis (L.) Carrière), with red oak trees additionally showing 6080% higher fluxes than red maple. Despite fixing one-third of its carbon when broad-leaved species were leafless, hemlock was not able to compensate for its low photosynthetic rates during the growing season. Productivity measures derived from annual growth rings and eddy covariance confirmed that whole-tree sap flow provided a valuable estimate of both the magnitude of current forest fluxes and differences in individual species' fluxes. Our results indicate that the predicted loss of hemlock from mixed temperate forests could potentially increase whole-forest water loss and carbon gain by two- to four-fold, provided sufficient nitrogen and water remain available to support such a change.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2000-02-01
    Description: Changes in forest species composition could influence ecosystem carbon uptake rates. To understand how species differed in their contributions to canopy photosynthesis, we investigated how the dominant coniferous (eastern hemlock, Tsuga canadensis (L.) Carr.) and broad-leaved (northern red oak, Quercus rubra L.; red maple, Acer rubrum L.) species in a central Massachusetts forest differed in canopy carbon uptake rates. We considered what factors influenced in situ leaf-level photosynthesis and then used a bottom-up summation approach to estimate species-specific total canopy carbon uptake rates. Variation in canopy light strongly influenced leaf-level photosynthetic rates: sunlit leaves had significantly higher rates than shaded leaves, and photosynthesis increased with canopy height. Species also differed in leaf-level photosynthetic rates, with the broad-leaved species having up to twofold higher rates than hemlock. Within hemlock, needles older than 2 years had lower photosynthesis than younger needles. Variation in leaf-level photosynthesis scaled up to influence canopy carbon uptake rates. Red oak consistently had the highest canopy photosynthetic rates, while through the season, hemlock's relative contribution to carbon flux increased and that of red maple decreased. Thus, in such mixed forests, future changes in species composition could have substantial impacts on forest carbon dynamics, particularly if red oak is the primary broad-leaved species to expand at the expense of hemlock.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...