ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (5)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 122 (2000), S. 1-10 
    ISSN: 1432-1939
    Keywords: Key words Distribution ; Gregariousness ; Larval strategy ; Lepidoptera ; Thermoregulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Group-living in animal populations has many possible ecological and evolutionary explanations, including predator evasion and feeding facilitation. In insects, the thermal balance of solitary and gregarious larvae is likely to differ and may thus have important ecological consequences. The abilities of the larvae of four species of nettle-feeding nymphalid butterflies to thermoregulate were quantified in the field. Larval surface body temperatures of the gregarious Aglais urticae (small tortoiseshell) and Inachis io (peacock) and the solitary Polygonia c-album (comma) and Vanessa atalanta (red admiral) were measured for each instar, in both sunny and overcast conditions, over a seasonal range of temperatures. The results suggested two distinct larval thermal strategies. In the presence of direct sunlight, the exposed gregarious larvae of A. urticae and I. io regulated body temperatures at 32.5 and 31.5°C, respectively, while the temperatures of concealed larvae of P. c-album and V. atalanta were largely dependent on ambient temperatures. In the sun, the range of body temperatures recorded for A. urticae and I. io larvae was fairly narrow relative to ambient temperatures. This suggests a high degree of thermal control in these species. Modal body temperatures coincided with the temperature at which development rate is maximal. Regardless of whether changes in thermoregulation are a cause or consequence of the evolution of gregariousness, the combination of behavioural thermoregulation and gregariousness in larval insects has important implications for voltinism patterns and range extension (via increased development rates). Distributional responses of gregarious and solitary larvae to climatic warming may differ as a result of changes in cloud cover as well as changes in temperature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Hydromedion sparsutum is a locally abundant herbivorous beetle on the sub-Antarctic island of South Georgia, often living in close association with the tussock grass Parodiochloa flabellata. Over a 4-day period in mid-summer when the air temperature varied from 0 to 20°C, the temperature in the leaf litter 5–10 cm deep at the base of tussock plants (the microhabitat of H. sparsutum) was consistently within the range of 5–7.5°C. Experiments were carried out to assess the ability of H. sparsutum larvae collected from this thermally stable environment to acclimate when maintained at lower (0°C) and higher (15°C) temperatures. The mean supercooling points (freezing temperature) of larvae collected in January and acclimated at 0°C for 3 and 6 weeks and 15°C for 3 weeks were all within the range of −2.6 to −4.6°C. Larvae in all treatment groups were freeze tolerant. Acclimation at 0°C significantly increased survival in a 15-min exposure at −8°C (from 27 to 96%) and −10°C (from 0 to 63%) compared with the field-fresh and 15°C-treated larvae. Similarly, survival of 0°C-acclimated larvae in a 72-h exposure at −6°C increased from 20 to 83%. Extending the acclimation period at 0°C to 6 weeks did not produce any further increase in cold tolerance. The concentrations of glucose and trehalose in larval body fluids increased significantly with low temperature acclimation. Larvae maintained at 15°C for 3 weeks (none survived for 6 weeks) were less able to survive 1-h exposures between 30 and 35°C than the 0°C-treated samples. Whilst vegetation and snow cover are an effective buffer against low winter temperatures in many polar insects, the inability of H. sparsutum larvae to acclimate or survive at 15°C suggests that protection against high summer temperatures is equally important for this species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-01-22
    Print ISSN: 0722-4060
    Electronic ISSN: 1432-2056
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-01-18
    Print ISSN: 0029-8549
    Electronic ISSN: 1432-1939
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2002-07-29
    Description: Insects are the most diverse fauna on earth, with different species occupying a range of terrestrial and aquatic habitats from the tropics to the poles. Species inhabiting extreme low–temperature environments must either tolerate or avoid freezing to survive. While much is now known about the synthesis, biochemistry and function of the main groups of cryoprotectants involved in the seasonal processes of acclimatization and winter cold hardiness (ice–nucleating agents, polyols and antifreeze proteins), studies on the structural biology of these compounds have been more limited. The recent discovery of rapid cold–hardening, ice–interface desiccation and the daily resetting of critical thermal thresholds affecting mortality and mobility have emphasized the role of temperature as the most important abiotic factor, acting through physiological processes to determine ecological outcomes. These relationships are seen in key areas such as species responses to climate warming, forecasting systems for pest outbreaks and the establishment potential of alien species in new environments.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...