ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (13)
  • 2000-2004  (13)
  • 1
    facet.materialart.
    Unknown
    GSA, Geological Society of America
    In:  Geology, 32 (7). pp. 549-552.
    Publication Date: 2017-08-04
    Description: Water transported in subducting oceanic plates plays a key role in a number of phenomena, including intraslab seismicity and arc magmatism. However, the locus of plate hydration and water distribution in crust and mantle of plates entering subduction zones is debated. We present evidence for anomalously low seismic velocities and densities of the crust and upper mantle of the Nazca plate at the north Chile trench. Crustal seismic velocities at the trench are lower than velocities of mature fast-spreading crust and even lower than velocities of highly extended slow-spreading crust. In addition, the Nazca plate at the north Chile trench may contain an ∼20-km-thick upper-mantle layer with ∼17% serpentine, which implies ∼2.5 wt% water. These results document pervasive rock alteration by water percolation linked to bending-related extensional faulting.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    GSA, Geological Society of America
    In:  Geology, 32 (10). p. 913.
    Publication Date: 2017-08-07
    Description: Erosion by high stress abrasion of convergent margins from horsts and grabens on the subducting plate is not shown in seismic images. In a proposed model, the frontal sediment prism is a dynamic mass that elevates pore-fluid pressure. Overpressured fluid invades fractures in the upper plate and separates fragments that are dragged into a subduction channel along the plate interface. Removed fragments are smaller than surface ship seismic techniques have resolved and beyond the reach of past scientific ocean drilling; however, current drill capability and downhole geophysics can test the model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GSA, Geological Society of America
    In:  Geology, 32 (10). pp. 913-916.
    Publication Date: 2019-09-23
    Description: Erosion by high stress abrasion of convergent margins from horsts and grabens on the subducting plate is not shown in seismic images. In a proposed model, the frontal sediment prism is a dynamic mass that elevates pore-fluid pressure. Overpressured fluid invades fractures in the upper plate and separates fragments that are dragged into a subduction channel along the plate interface. Removed fragments are smaller than surface ship seismic techniques have resolved and beyond the reach of past scientific ocean drilling; however, current drill capability and downhole geophysics can test the model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-07-17
    Description: Over the last two decades numerous studies have investigated the structure of the west Iberia continental margin, a non-volcanic margin characterized by a broad continent–ocean transition (COT). However, the nature and structure of the crust of the segment of the margin off SW Iberia is still poorly understood, because of sparse geophysical and geological data coverage. Here we present a 275-km-long multichannel seismic reflection (MCS) profile, line AR01, acquired in E–W direction across the Horseshoe Abyssal Plain, to partially fill the gap of information along the SW Iberia margin. Line AR01 runs across the inferred plate boundary between the Iberian and the African plates during the opening of the Central Atlantic ocean. The boundary separates crust formed during or soon after continental rifting of the SW Iberian margin from normal seafloor spreading oceanic crust of the Central Atlantic ocean. Line AR01 has been processed and pre-stack depth migrated to show the tectonic structure of the crust across the palaeo plate boundary. This boundary is characterized by a 30–40-km-wide zone of large basements highs related to landward-dipping reflections, which penetrate to depths of 13–15 km, and it marks a change in the character of the basement structure and relief from east to west. In this study, we have used pre-stack depth migrated images, the velocity model of line AR01 and magnetic data available in the area to show that the change in basement structure occurs across the fossil plate boundary, separating African oceanic crust of the M series (M21–M16) to the west from the transitional crust of the Iberian margin to the east.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine Geology, 203 (3-4). pp. 303-317.
    Publication Date: 2017-07-28
    Description: Slope failure along the Costa Rica convergent margin commonly results from steepening of the continental slope above underthrust relief on the subducting plate. The 50-km-wide prehistoric Nicoya Slump was a big event that was followed by small slides from its headwall. Estimated maximum wave height above the slide is 27 m. The headwall occurs along a tectonized and unstable zone that extends northwest. An expected great earthquake in the adjacent Nicoya seismic gap could trigger future tsunamigenic landslides along this zone. The central Nicaragua slope, where the 1992 tsunamigenic earthquake occurred, has failed from steepening by tectonic erosion and perhaps subducting relief. The steep middle slope displays several large slide scars, each of which had the potential to generate a 6–7-m-high wave. A relation between the youngest slide and the 1992 earthquake is uncertain. Principal causes of landslides off Middle America were tectonic steepening and elevated fluid pressure. A mid-slope tectonized zone off Costa Rica allowed detachment of a huge slump involving the entire lower slope to the plate boundary. It may pose a hazard during rupture of the Nicoya locked zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-07-21
    Description: Pre-Permian sedimentary basins in the southeastern North Sea have been previously interpreted from potential field data but only poorly imaged on seismic sections due to the presence of salt layers and a thick Mesozoic and Cenozoic cover. Furthermore, potentially low prospectivity for hydrocarbon resources has resulted in sparse penetration of Pre-Permian sediments in the southeastern North Sea. We present images of large Palaeozoic basins obtained through reprocessing and pre-stack depth migration of seismic data from the MONA LISA project. The depth images show in detail the structure of pre-Permian basins beneath the Danish basin and the Ringkøbing-Fyn High, providing new insights into Upper Palaeozoic basin formation in the North Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-17
    Description: We present depth images, from portions of profiles that are close to flow-lines, of Cretaceous oceanic crust in the eastern Central Atlantic. Compared with post-stack time migrations, the images illustrate the improvement resulting from the application of pre-stack depth migration. The images document the scale and geometry of normal faulting in oceanic crust formed over 25 Myr at a half-spreading rate of less than 10 mm yr−1, and the variation in extensional style with position within the spreading segment. Away from major fault zones (FZs), most faults are subplanar, dip more than 35°, are associated with moderate basement relief (0.2–1 km relief) and may penetrate to deep crustal levels. These faults could be related to the lifting of the lithosphere out of the median valley to the flanking mountains. Also observed away from FZs are gently dipping to subhorizontal reflections in the upper crust, which resemble detachment faults. In contrast, the inside corner crust is more rugged, with basement highs rising up to 2 km above the intervening basins. This larger-scale topography is associated with a different style of faulting: the depth images reveal gently dipping (〈35°) faults that are rooted in the deep crust and that project to the ridgeward flank of the dome-shaped large basement highs (1–2 km vertical relief). The faults seem to continue as the ridge-facing flank of these highs and some may extend over the crest of the high to breakaways beyond. In this case, the domal highs that form the exhumed footwall to the faults can be described as oceanic core complexes. These controlling faults are up to 20 km long and have a heave of ∼10 km, sufficient to have accommodated up to 50 per cent extension and to have exhumed deep crustal and perhaps even mantle rocks. We suggest that similar faults can explain the structure and lithologies found at megamullion structures (oceanic core complexes) at inside corners near the present-day spreading ridge.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Spektrum d. Wiss. Verl.-Ges.
    In:  Spektrum der Wissenschaft, 2001 (2). p. 12.
    Publication Date: 2019-08-06
    Description: Vor der Pazifikküste Costa Ricas ließ sich mit geophysikalischen Methoden erstmals direkt zeigen, wie eine ozeanische Platte beim Abtauchen unter einen Kontinentalrand Material von dessen Unterseite abschabt.
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-12-06
    Description: Contemporaneous occurrences of the geologic signals of ‘large impacts’, craton-associated continental flood basalts, and mass extinctions have occurred far too often during the past 400 Myr to be plausibly attributed to random coincidence. While there is only a 1 in 8 chance that even one synchronous large impact within the interval of a continental flood basalt and mass extinction event should have happened during this period, there is now geologic evidence of four such ‘coincidences’, implying causal links between them. The ∼66 Ma (K–T) evidence suggests that impacts do not trigger flood basalts, since the Deccan flood basalt had started erupting well before the Chicxulub impact event. If extraterrestrial impacts do not trigger continental flood basalt volcanism, then we are really only left with two possible resolutions to the dilemma posed by these mega-coincidences: either the reported ‘impact signals’ at the times of great mass extinctions are spurious or misleading, or – somehow – a terrestrial process linked to continental rifting and the eruption of cratonic flood basalts is sometimes able to generate the shocked quartz, microspherules, and other geologic traces commonly attributed to large extraterrestrial impacts, while also triggering a mass extinction event. Here we explore a promising mechanistic link: a large explosive carbon-rich gas release event from cratonic lithosphere, triggered by mantle plume incubation beneath cratonic lithosphere, and typically associated with the onset phase of continental rifting. Sudden CO2/CO and SO2 release into the atmosphere would provide the primary killing mechanism of the induced extinction event. Such explosive deep-lithospheric blasts could create shock waves, cavitation, and mass jet formation within the venting region that could both create and transport a sufficiently large mass of shocked crust and mantle into globally dispersive super-stratospheric trajectories. We suggest these be called ‘Verneshot’ events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: At least since the middle Miocene (∼16 Ma), subduction erosion has been the dominant process controlling the tectonic evolution of the Pacific margin of Costa Rica. Ocean Drilling Program Site 1042 recovered 16.5 Ma nearshore sediment at ∼3.9 km depth, ∼7 km landward of the trench axis. The overlying Miocene to Quaternary sediment contains benthic foraminifera documenting margin subsidence from upper bathyal (∼200 m) to abyssal (∼2000 m) depth. The rate of subsidence was low during the early to middle Miocene but increased sharply in the late Miocene-early Pliocene (5–6.5 Ma) and at the Pliocene-Pleistocene boundary (2.4 Ma). Foraminifera data, bedding dip, and the geometry of slope sediment indicate that tilting of the forearc occurred coincident with the onset of rapid late Miocene subsidence. Seismic images show that normal faulting is widespread across the continental slope; however, extension by faulting only accounts for a minor amount of the post-6.5 Ma subsidence. Basal tectonic erosion is invoked to explain the subsidence. The short-term rate of removal of rock from the forearc is about 107–123 km3 Myr−1 km−1. Mass removal is a nonsteady state process affecting the chemical balance of the arc: the ocean sediment input, with the short-term erosion rate, is a factor of 10 smaller than the eroded mass input. The low 10Be concentration in the volcanic arc of Costa Rica could be explained by dilution with eroded material. The late Miocene onset of rapid subsidence is coeval with the arrival of the Cocos Ridge at the subduction zone. The underthrusting of thick and thermally younger ocean crust decreased the subduction angle of the slab along a large segment of the margin and changed the dynamic equilibrium of the margin taper. This process may have induced the increase in the rate of subduction erosion and thus the recycling of crustal material to the mantle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...