ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • 2000-2004  (3)
Collection
Years
Year
  • 1
    Publication Date: 2019-07-18
    Description: The Convection And Moisture Experiment (CAMEX) is a series of field research investigations sponsored by the Earth Science Enterprise of the National Aeronautics and Space Administration (NASA). The fourth field campaign in the CAMEX series (CAMEX-4) was recently conducted during 16 August - 24 September 2001 using the Jacksonville Naval Air Station in Florida as the main base of operations. CAMEX-4 focused on the study of tropical cyclone (hurricane) development, tracking, intensification, and landfalling impacts using NASA-funded aircraft and surface remote sensing instrumentation. The results of this study will be used to address key issues pertinent to a larger NASA ESE study of the global water cycle as well as to provide synergistic contributions to the research goals of the Hurricane Research Division (HRD) of the National Oceanic and Atmospheric Administration (NOAA) and the Hurricanes At Landfall Initiative of the United States Weather Research Program. All CAMEX-4 aircraft missions were planned and jointly conducted with NOAA aircraft to insure comprehensive sampling. An overview of preliminary observations of Tropical Storms Chantal and Gabrielle as well as Hurricanes Erin and Humberto will be presented.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 25th Conference on Hurricanes and Tropical Meteorology; Apr 29, 2002 - May 03, 2002; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-10
    Description: Realistic vertical heating and drying profiles in a cumulus scheme is important for obtaining accurate weather forecasts. A new empirical cumulus parameterization scheme based on a procedure to improve the vertical distribution of heating and moistening over the tropics is developed. The empirical cumulus parameterization scheme (ECPS) utilizes profiles of Tropical Rainfall Measuring Mission (TRMM) based heating and moistening derived from the European Centre for Medium- Range Weather Forecasts (ECMWF) analysis. A dimension reduction technique through rotated principal component analysis (RPCA) is performed on the vertical profiles of heating (Q1) and drying (Q2) over the convective regions of the tropics, to obtain the dominant modes of variability. Analysis suggests that most of the variance associated with the observed profiles can be explained by retaining the first three modes. The ECPS then applies a statistical approach in which Q1 and Q2 are expressed as a linear combination of the first three dominant principal components which distinctly explain variance in the troposphere as a function of the prevalent large-scale dynamics. The principal component (PC) score which quantifies the contribution of each PC to the corresponding loading profile is estimated through a multiple screening regression method which yields the PC score as a function of the large-scale variables. The profiles of Q1 and Q2 thus obtained are found to match well with the observed profiles. The impact of the ECPS is investigated in a series of short range (1-3 day) prediction experiments using the Florida State University global spectral model (FSUGSM, T126L14). Comparisons between short range ECPS forecasts and those with the modified Kuo scheme show a very marked improvement in the skill in ECPS forecasts. This improvement in the forecast skill with ECPS emphasizes the importance of incorporating realistic vertical distributions of heating and drying in the model cumulus scheme. This also suggests that in the absence of explicit models for convection, the proposed statistical scheme improves the modeling of the vertical distribution of heating and moistening in areas of deep convection.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-14
    Description: Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent-heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid, and solid water. The Tropical Rainfall Measuring Mission (TRMM), a joint U.S./Japan space project, was launched in November 1997. It provides an accurate measurement of rainfall over the global tropics which can be used to estimate the four-dimensional structure of latent heating over the global tropics. The distributions of rainfall and inferred heating can be used to advance our understanding of the global energy and water cycle. This paper describes several different algorithms for estimating latent heating using TRMM observations. The strengths and weaknesses of each algorithm as well as the heating products are also discussed. The validation of heating products will be exhibited. Finally, the application of this heating information to global circulation and climate models is presented.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...