ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • 2000-2004  (3)
Collection
Years
Year
  • 1
    Publication Date: 2018-06-06
    Description: Currently, the best available probe of the early phase of gamma-ray burst (GRB) jet attributes is the prompt gamma-ray emission, in which several intrinsic and extrinsic variables determine GRB pulse evolution. Bright, usually complex bursts have many narrow pulses that are difficult to model due to overlap. However, the relatively simple, long spectral lag, wide-pulse bursts may have simpler physics and are easier to model. In this work we analyze the temporal and spectral behavior of wide pulses in 24 long-lag bursts, using a pulse model with two shape parameters - width and asymmetry - and the Band spectral model with three shape parameters. We find that pulses in long-lag bursts are distinguished both temporally and spectrally from those in bright bursts: the pulses in long spectral lag bursts are few in number, and approximately 100 times wider (10s of seconds), have systematically lower peaks in vF(v), harder low-energy spectra and softer high-energy spectra. We find that these five pulse descriptors are essentially uncorrelated for our long-lag sample, suggesting that at least approximately 5 parameters are needed to model burst temporal and spectral behavior. However, pulse width is strongly correlated with spectral lag; hence these two parameters may be viewed as mutual surrogates. We infer that accurate formulations for estimating GRB luminosity and total energy will depend on several gamma-ray attributes, at least for long-lag bursts. The prevalence of long-lag bursts near the BATSE trigger threshold, their predominantly low vF(v) spectral peaks, and relatively steep upper power-law spectral indices indicate that Swift will detect many such bursts.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: Using the lag-luminosity relation and various BATSE catalogs we create a large catalog of burst redshifts, peak luminosities and emitted energies. These catalogs permit us to evaluate the lag-luminosity relation, and to study the burst energy distribution. We find that this distribution can be described as a power law with an index of alpha = 1.76 +/- 0.05 (95% confidence), close to the alpha = 2 predicted by the original quasi-universal jet model.
    Keywords: Documentation and Information Science
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The connection between SNe and GRBs, launched by SN 1998bw / GRB 980425 and clinched by SN 2003dh / GRB 030329-with the two GRBs differing by a factor of approximately 50000 in luminosity-so far suggests a rough upper limit of approximately 1-2 days for the delay between SN and GRB. Only four SNe have had nonnegligible coverage in close coincidence with the initial explosion, near the W shock breakout: two Qpe II, and two Type IC, SN 1999ex and SN 1998bw. For the latter, only a hint of the minimum between the UV maximum and the radioactivity bump served to help constrain the interval between SN and GRB. Swift GRB alerts may provide the opportunity to study many SNe through the UV breakout phase: GRB 980425 look dikes -apparently nearby, low- luminosity, soft-spectrum, long-lag GRBs-accounted for half of BATSE bursts near threshold, and may dominate the Swift yield near threshold, since it has sensitivity to lower energies than did BATSE. The SN to GRB delay timescale should be better constrained by prompt UV/optical observations alerted by these bursts. Definitive delay measurements may be obtained if long-lag bursters are truly nearby: The SNe/GRBs could emit gravitational radiation detectable by LIGO-II if robust non-axisymmetric bar instabilities develop during core collapse, and/or neutrino emission may be detectable as suggested by Meszaros et al.
    Keywords: Astrophysics
    Type: Gamma Ray Burst Symposium; Sep 08, 2003 - Sep 12, 2003; Santa Fe, New Mexico; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...