ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Spacecraft Propulsion and Power  (3)
  • 2000-2004  (3)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2011-08-23
    Description: Rapid transport of large payloads and human crews throughout the solar system requires propulsion systems having very high specific impulse (I(sub sp) 〉 10(exp 4) to 10(exp 5) s). It also calls for systems with extremely low mass-power ratios (alpha 〈 10(exp -1) kg/kW). Such low alpha are beyond the reach of conventional power-limited propulsion, but may be attainable with fusion and other nuclear concepts that produce energy within the propellant. The magnitude of energy gain must be large enough to sustain the nuclear process while still providing a high jet power relative to the massive energy-intensive subsystems associated with these concepts. This paper evaluates the impact of energy gain and subsystem characteristics on alpha. Central to the analysis are general parameters that embody the essential features of any 'gain-limited' propulsion power balance. Results show that the gains required to achieve alpha = 10(exp -1) kg/kW with foreseeable technology range from approximately 100 to over 2000, which is three to five orders of magnitude greater than current fusion state of the arL Sensitivity analyses point to the parameters exerting the most influence for either: (1) lowering a and improving mission performance or (2) relaxing gain requirements and reducing demands on the fusion process. The greatest impact comes from reducing mass and increasing efficiency of the thruster and subsystems downstream of the fusion process. High relative gain, through enhanced fusion processes or more efficient drivers and processors, is also desirable. There is a benefit in improving driver and subsystem characteristics upstream of the fusion process, but it diminishes at relative gains 〉 100.
    Keywords: Spacecraft Propulsion and Power
    Type: Journal of Propulsion and Power; Volume 17; No. 5; 988-994
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: Most fusion propulsion concepts that have been investigated in the past employ some form of inertial or magnetic confinement separately, and are encumbered by the need for advanced drivers (e.g. laser) or steady-state magnetic confinement systems (e.g. superconductors) that have historically resulted in large, massive spacecraft designs. Here we present a comparatively new approach, Magnetized Target Fusion (MTF), which offers a nearer-term avenue for realizing the tremendous performance benefits of fusion propulsion. MTF attempts to combine the favorable attributes of both inertially and magnetically confined fusion to achieve both efficient and low-cost compressional plasma heating and energy confinement. The key advantage of MTF is its less demanding requirements for driver energy and power processing. Additional features include: 1) very low system masses and volumes, 2) relatively low waste heat, 3) substantial utilization of energy from product neutrons, 4) efficient, low peak-power drivers based on existing pulsed power technology, 5) very high Isp , specific power and thrust, and 6) relatively affordable R&D pathways. MTF overcomes many of the problems associated with traditional fusion techniques, thus making it particularly attractive for space applications. Isp greater than 50,000 seconds and specific powers greater than 20 kilowatts/kilogram appear feasible using relatively near-term pulse power and plasma gun technology.
    Keywords: Spacecraft Propulsion and Power
    Type: DOE Innovative Confinement Concepts; Jan 22, 2002 - Jan 24, 2002; College Park, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: Most fusion propulsion concepts that have been investigated in the past employ some form of inertial or magnetic confinement. Although the prospective performance of these concepts is excellent, the fusion processes on which these concepts are based still require considerable development before they can be seriously considered for actual applications. Furthermore, these processes are encumbered by the need for sophisticated plasma and power handling systems that are generally quite inefficient and have historically resulted in large, massive spacecraft designs. Here we present a comparatively new approach, Magnetized Target Fusion (MTF), which offers a nearer-term avenue for realizing the tremendous performance benefits of fusion propulsion'. The key advantage of MTF is its less demanding requirements for driver energy and power processing. Additional features include: 1) very low system masses and volumes, 2) high gain and relatively low waste heat, 3) substantial utilization of energy from product neutrons, 4) efficient, low peak-power drivers based on existing pulsed power technology, and 5) very high Isp, specific power and thrust. MTF overcomes many of the problems associated with traditional fusion techniques, thus making it particularly attractive for space applications. Isp greater than 50,000 seconds and specific powers greater than 50 kilowatts/kilogram appear feasible using relatively near-term pulse power and plasma gun technology.
    Keywords: Spacecraft Propulsion and Power
    Type: International Electric Propulsion Conference; Oct 14, 2001 - Oct 19, 2001; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...