ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (2)
  • Springer Nature
  • 2000-2004  (2)
Collection
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experiments in fluids 28 (2000), S. 165-169 
    ISSN: 1432-1114
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The current work describes the development of a non-intrusive optical method for the quantitative determination of water heights along a hydraulic jump in shooting water flows on a water table. The technique involves optically superimposing a series of alternating dark and clear fringes on the water flow. It is proposed that the fringe deviations seen under a hydraulic jump can be simulated using a series of optical prisms oriented along the direction of the hydraulic jump. The height of each prism gives the local maximum water height at the fringe location. Three types of theoretical prism configurations (isosceles flat-topped prism, scalene flat-topped prism and rounded-topped prism models) have been studied for two flow systems: shooting flow around a wedge and around a cylinder. Equations relating the physical characteristics of the deviated fringes to the height of the theoretical prism and hence the local water height are presented. The variation in water height along a hydraulic jump for flow around a wedge obtained using the optical technique has been compared with heights obtained using a depth gauge. The results were in good agreement for the range of Froude numbers studied (Fr=1.9−3.6). The rounded-topped prism model led to the best agreement with the physical measurements, within 11% throughout the range of conditions studied. The uncertainty associated with the water height determination using the optical technique is ±10%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-02-09
    Print ISSN: 0723-4864
    Electronic ISSN: 1432-1114
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...