ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (42)
  • 2000-2004  (81)
  • 1950-1954  (2)
Collection
Years
Year
  • 1
    Monograph available for loan
    Monograph available for loan
    New York [u.a.] : Springer-Verl.
    Associated volumes
    Call number: PIK N 076-00-0448
    In: Ecological studies
    Type of Medium: Monograph available for loan
    Pages: 500 p. + CD
    ISBN: 3540670254
    Series Statement: Ecological studies 142
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Carbon exchange between the terrestrial biosphere and the atmosphere is one of the key processes that need to be assessed in the context of the Kyoto Protocol. Several studies suggest that the terrestrial biosphere is gaining carbon, but these estimates are obtained primarily by indirect ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 8 (2002), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The Sixth and Seventh Conference of the Parties (COP 6 and 7) at The Hague, Bonn and Marrakesh came to a final Agreement on the Kyoto Protocol, which is thus ready for ratification by the individual nations. The Agreement was only achieved by allowing countries to offset their fossil fuel emission targets (on average 95% of the 1990 emissions) by increasing biological carbon sequestration, and by trading carbon credits. Activities that would count as increasing biological carbon sequestration include afforestation and reforestation, and changes in management of agriculture and forestry. According to the Agreement reached in Marrakesh, biological carbon sequestration may reach an offset of up to 80% of the required reduction in fossil fuel emissions (4% of the 5% reduction commitment). We explain why the allowable offset rose as high during the course of the negotiations. It is highlighted that major unintended consequences may be a result of the policy as it stands in the Marrakesh Accord. Major losses of biodiversity and primary forest are expected. We present scientific concerns regarding verification, which lead to scientific doubts that the practices encouraged by the Agreement can actually increase sequestration under a full carbon accounting scheme. We explain that there is a ‘win-win’ option that would protect high carbon pools and biodiversity in an economically efficient way. But, this is not supported by the Agreement. Despite the very positive signal that most nations of the United Nations will devote major efforts towards climate protection, there remains a most urgent need to develop additional rules to avoid unintended outcomes, and to promote the ‘win-win’ options that we explain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 10 (2004), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Eddy covariance was used to measure the net CO2 exchange (NEE) over ecosystems differing in land use (forest and agriculture) in Thuringia, Germany. Measurements were carried out at a managed, even-aged European beech stand (Fagus sylvatica, 70–150 years old), an unmanaged, uneven-aged mixed beech stand in a late stage of development (F. sylvatica, Fraxinus excelsior, Acer pseudoplantanus, and other hardwood trees, 0–250 years old), a managed young Norway spruce stand (Picea abies, 50 years old), and an agricultural field growing winter wheat in 2001, and potato in 2002. Large contrasts were found in NEE rates between the land uses of the ecosystems. The managed and unmanaged beech sites had very similar net CO2 uptake rates (∼−480 to −500 g C m−2 yr−1). Main differences in seasonal NEE patterns between the beech sites were because of a later leaf emergence and higher maximum leaf area index at the unmanaged beech site, probably as a result of the species mix at the site. In contrast, the spruce stand had a higher CO2 uptake in spring but substantially lower net CO2 uptake in summer than the beech stands. This resulted in a near neutral annual NEE (−4 g C m−2 yr−1), mainly attributable to an ecosystem respiration rate almost twice as high as that of the beech stands, despite slightly lower temperatures, because of the higher elevation. Crops in the agricultural field had high CO2 uptake rates, but growing season length was short compared with the forest ecosystems. Therefore, the agricultural land had low-to-moderate annual net CO2 uptake (−34 to −193 g C m−2), but with annual harvest taken into account it will be a source of CO2 (+97 to +386 g C m−2). The annually changing patchwork of crops will have strong consequences on the regions' seasonal and annual carbon exchange. Thus, not only land use, but also land-use history and site-specific management decisions affect the large-scale carbon balance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  Interactions between the extracellular matrix (ECM) and chondrocytes are of great importance for structure and function of cartilage. The present study was undertaken to answer the question whether caveolins take part in integrin-mediated cell–ECM interactions in the human cartilage. In samples of human knee joint cartilage, we detected the caveolin subtypes -1, -2, and -3 by immunohistochemical methods. Double-label experiments revealed a colocalization of caveolin with β1-integrin. Results of immunoprecipitation and immunoblotting assays show that β1-integrins associate with all three caveolin subtypes in human chondrocytes and indicate that they are part of the same complexes. Furthermore, immunoelectron microscopy shows the localization of β1-integrin in caveolae-like structures of the cell membrane. The data stimulate further investigations on the role of the caveolin–integrin complex for integrin-mediated signaling pathways in chondrocytes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Zeitschrift für anorganische Chemie 277 (1954), S. 156-171 
    ISSN: 0044-2313
    Keywords: Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Durch thermischen Abbau von C8K sowie durch Umsetzung von Graphit mit Kalium und Rubidium konnten weitere Alkaligraphitverbindungen mit Alkalischichten in nur jeder 3., 4. oder 5. basisparallelen Schichtlücke des Graphitgitters erhalten werden. Die Zusammensetzung der 2. Stufe  -  bisher als C16Me formuliert  -  entspricht C24Me, die der folgenden Stufen im Idealfall C36Me, C48Me, C60Me.Bei allen Stufen haben die den Alkalischichten benachbarten Kohlenstoffschichten identische Lagen übereinander, während die anderen C-Ebenen wie im Graphit zueinander orientiert sind. Für die 1. Stufe, C8Me, wird ein neuer Strukturvorschlag entwickelt.Magnetische Messungen geben für die 1.-5. Stufe einen schwachen Paramagnetismus.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-12-09
    Description: Climate change negotiations aim to reduce net greenhouse-gas emissions by encouraging direct reductions of emissions and crediting countries for their terrestrial greenhouse-gas sinks. Ecosystem carbon dioxide uptake has offset nearly 10% of Europe’s fossil fuel emissions, but not all of this may be creditable under the rules of the Kyoto Protocol. Although this treaty recognizes the importance of methane and nitrous oxide emissions, scientific research has largely focused on carbon dioxide. Here we review recent estimates of European carbon dioxide, methane and nitrous oxide fluxes between 2000 and 2005, using both top-down estimates based on atmospheric observations and bottom-up estimates derived from ground-based measurements. Both methods yield similar fluxes of greenhouse gases, suggesting that methane emissions from feedstock and nitrous oxide emissions from arable agriculture are fully compensated for by the carbon dioxide sink provided by forests and grasslands. As a result, the balance for all greenhouse gases across Europe’s terrestrial biosphere is near neutral, despite carbon sequestration in forests and grasslands. The trend towards more intensive agriculture and logging is likely to make Europe’s land surface a significant source of greenhouse gases. The development of land management policies which aim to reduce greenhouse-gas emissions should be a priority.
    Description: Published
    Description: 842-850
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: carbon budget ; carbon dioxide ; methane ; greenhouse gas emission ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-01-11
    Description: Globally, terrestrial ecosystems have absorbed about 30% of anthropogenic greenhouse gas emissions over the period 2000–2007 and inter-hemispheric gradients indicate that a significant fraction of terrestrial carbon sequestration must be north of the Equator. We present a compilation of the CO2, CO, CH4 and N2O balances of Europe following a dual constraint approach in which (1) a landbased balance derived mainly from ecosystem carbon inventories and (2) a land-based balance derived from flux measurements are compared to (3) the atmospheric data-based balance derived from inversions constrained by measurements of atmospheric GHG (greenhouse gas) concentrations. Good agreement between the GHG balances based on fluxes (1294±545 Tg C in CO2-eq yr−1), inventories (1299±200 Tg C in CO2-eq yr−1) and inversions (1210±405 Tg C in CO2-eq yr−1) increases our confidence that the processes underlying the European GHG budget are well understood and reasonably sampled. However, the uncertainty remains large and largely lacks formal estimates. Given that European net land to atmosphere exchanges are determined by a few dominant fluxes, the uncertainty of these key components needs to be formally estimated before efforts could be made to reduce the overall uncertainty. The net land-to-atmosphere flux is a net source for CO2, CO, CH4 and N2O, because the anthropogenic emissions by far exceed the biogenic sink strength. The dual-constraint approach confirmed that the European biogenic sink removes as much as 205±72 Tg C yr−1 from fossil fuel burning from the atmosphere. However, This C is being sequestered in both terrestrial and inland aquatic ecosystems. If the C-cost for ecosystem management is taken into account, the net uptake of ecosystems is estimated to decrease by 45% but still indicates substantial C-sequestration. However, when the balance is extended from CO2 towards the main GHGs, C-uptake by terrestrial and aquatic ecosystems is offset by emissions of non-CO2 GHGs. As such, the European ecosystems are unlikely to contribute to mitigating the effects of climate change.
    Description: Published
    Description: 3357–3380
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: carbon dioxide ; methane ; soil ; ecosystems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...