ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (5)
  • 1985-1989  (1)
Collection
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 511 (1987), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Notes: The conditioned media of 34 human tumor cell lines were screened for the ability to induce granulocyte-macrophage colonies in vitro in bone marrow cultures, to stimulate proliferation of a murine IL-3 dependent hemopoietic cell line (32D clone 3) and to stimulate thymidine incorporation in suspension cultures of acute myelogenous leukemia cells. Twelve tumor cell lines produced factors that were active in these assays. The conditioned medium of the glioblastoma cell line U87 MG was characterized in detail and found to contain G-CSF and GM-CSF. Cloning and sequencing of the U87 MG G-CSF indicated that it was derived from G-CSF b mRNA, which encodes a protein with a deletion of 3 amino acids at residues 36–38. The gene for G-CSF was mapped to human chromosome 17 band q21, a region involved in translocations frequently found in acute promyelocytic leukemia. G-CSF (U87MG) was able to induce granulocytic differentiation of the total population of a murine IL-3 dependent cell line, 32D clone 3; this effect was antagonized by IL-3. GM-CSF (U87-MG) supported the proliferation without inducing differentiation of two growth factor-dependent leukemic cell lines, TALL 101 and AML-193.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-06-01
    Description: In acute myeloid leukemia (AML), granulocyte colony-stimulating factor receptor (G-CSFR) proliferative and maturational signaling pathways are uncoupled. Seven human G-CSFR mRNA isoforms exist, named class I through class VII. The 183-amino acid cytosolic domain of the class I isoform provides all signaling activities. The class IV isoform is “differentiation defective” because the carboxy-terminal 87 amino acids are replaced with 34 amino acids of novel sequence. In more than 50% of AML samples, the class IV/class I G-CSFR mRNA ratio is aberrantly elevated compared to normal CD34+ bone marrow cells. We hypothesized that the increased relative expression of class IV G-CSFR in AML uncouples proliferative and maturational G-CSFR signaling pathways. To test this, we transfected the G-CSF–responsive murine cell line 32Dcl3 with class IV G-CSFR cDNA. After 10 days of G-CSF stimulation, clones expressing class IV G-CSFR had greater percentages of myeloblasts and promyelocytes than controls (53% ± 13% versus 3% ± 2%). Differential counts over time demonstrated delayed G-CSF–driven maturation in 5 class IV-expressing clones, with 2 clones demonstrating a subpopulation that completely failed to differentiate. Heterologous class IV expression did not affect G-CSF–dependent proliferation. Class IV/murine G-CSFR mRNA ratios after 24 hours of G-CSF stimulation for 3 of the 5 clones (range, 0.090 to 0.245; mean, 0.152 ± 0.055) are within the range of class IV/class I mRNA ratios seen in patients with AML. This indicates that aberrantly increased relative class IV G-CSFR expression seen in AML can uncouple G-CSFR proliferative and maturational signaling pathways.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-06-01
    Description: In acute myeloid leukemia (AML), granulocyte colony-stimulating factor receptor (G-CSFR) proliferative and maturational signaling pathways are uncoupled. Seven human G-CSFR mRNA isoforms exist, named class I through class VII. The 183-amino acid cytosolic domain of the class I isoform provides all signaling activities. The class IV isoform is “differentiation defective” because the carboxy-terminal 87 amino acids are replaced with 34 amino acids of novel sequence. In more than 50% of AML samples, the class IV/class I G-CSFR mRNA ratio is aberrantly elevated compared to normal CD34+ bone marrow cells. We hypothesized that the increased relative expression of class IV G-CSFR in AML uncouples proliferative and maturational G-CSFR signaling pathways. To test this, we transfected the G-CSF–responsive murine cell line 32Dcl3 with class IV G-CSFR cDNA. After 10 days of G-CSF stimulation, clones expressing class IV G-CSFR had greater percentages of myeloblasts and promyelocytes than controls (53% ± 13% versus 3% ± 2%). Differential counts over time demonstrated delayed G-CSF–driven maturation in 5 class IV-expressing clones, with 2 clones demonstrating a subpopulation that completely failed to differentiate. Heterologous class IV expression did not affect G-CSF–dependent proliferation. Class IV/murine G-CSFR mRNA ratios after 24 hours of G-CSF stimulation for 3 of the 5 clones (range, 0.090 to 0.245; mean, 0.152 ± 0.055) are within the range of class IV/class I mRNA ratios seen in patients with AML. This indicates that aberrantly increased relative class IV G-CSFR expression seen in AML can uncouple G-CSFR proliferative and maturational signaling pathways.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-12-15
    Description: Signal transducer and activator of transcription 3 (STAT3) is an oncogene and a critical regulator of multiple cell-fate decisions, including myeloid cell differentiation. Two isoforms of STAT3 have been identified: α (p92) and β (p83). These differ structurally in their C-terminal transactivation domains, resulting in distinct functional activities. The cis genetic elements that regulate the ratio of α to β messenger RNA (mRNA) are unknown. In this study, cloning, sequencing, and splicing analysis of the human and murine STAT3 genes revealed a highly conserved 5′ donor site for generation of both α and β mRNA and distinct branch-point sequences, polypyrimidine tracts, and 3′ acceptor sites (ASs) for each. The β 3′ AS was found to be located 50 nucleotides downstream of the α 3′ AS in exon 23. Two additional cryptic 3′ ASs (δ and ε) were also identified. Thus, we identified for the first time the cisregulatory sequences responsible for generation of STAT3α and STAT3β mRNA.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2003-05-01
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2002-04-15
    Description: Signal transducer and activator of transcription (STAT) 5b-retinoic acid receptor (RAR) α is the fifth fusion protein identified in acute promyelocytic leukemia (APL). Initially described in a patient with all-trans retinoic acid (ATRA)–unresponsive disease, STAT5b-RARα resulted from an interstitial deletion on chromosome 17. To determine the molecular mechanisms of myeloid leukemogenesis and maturation arrest in STAT5b-RARα+ APL and its unresponsiveness to ATRA, we examined the effect of STAT5b-RARα on the activity of myeloid transcription factors including RARα/retinoid X receptor (RXR) α, STAT3, and STAT5 as well as its molecular interactions with the nuclear receptor corepressor, SMRT, and nuclear receptor coactivator, TRAM-1. STAT5b-RARα bound to retinoic acid response elements (RAREs) both as a homodimer and as a heterodimer with RXRα and inhibited wild-type RARα/RXRα transactivation. Although STAT5b-RARα had no effect on ligand-induced STAT5b activation, it enhanced interleukin 6–induced STAT3-dependent reporter activity, an effect shared by other APL fusion proteins including promyelocytic leukemia-RARα and promyelocytic leukemia zinc finger (PLZF)–RARα. SMRT was released from STAT5b-RARα/SMRT complexes by ATRA at 10−6 M, whereas TRAM-1 became associated with STAT5b-RARα at 10−7 M. The coiled-coil domain of STAT5b was required for formation of STAT5b-RARα homodimers, for the inhibition of RARα/RXRα transcriptional activity, and for stability of the STAT5b-RARα/SMRT complex. Thus, STAT5b-RARα contributes to myeloid maturation arrest by binding to RARE as either a homodimer or as a heterodimer with RXRα resulting in the recruitment of SMRT and inhibition of RARα/RXRα transcriptional activity. In addition, STAT5b-RARα and other APL fusion proteins may contribute to leukemogenesis by interaction with the STAT3 oncogene pathway.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...