ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meteorology and Climatology  (467)
  • 2005-2009  (185)
  • 2000-2004  (282)
  • 1950-1954
Collection
Years
Year
  • 1
    Publication Date: 2019-07-12
    Description: The Mixed-Phase Arctic Cloud Experiment (M-PACE) was conducted September 27 through October 22, 2004 on the North Slope of Alaska. The primary objective was to collect a data set suitable to study interactions between microphysics, dynamics and radiative transfer in mixed-phase Arctic clouds. Observations taken during the 1997/1998 Surface Heat and Energy Budget of the Arctic (SHEBA) experiment revealed that Arctic clouds frequently consist of one (or more) liquid layers precipitating ice. M-PACE sought to investigate the physical processes of these clouds utilizing two aircraft (an in situ aircraft to characterize the microphysical properties of the clouds and a remote sensing aircraft to constraint the upwelling radiation) over the Department of Energy s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) on the North Slope of Alaska. The measurements successfully documented the microphysical structure of Arctic mixed-phase clouds, with multiple in situ profiles collected in both single-layer and multi-layer clouds over two ground-based remote sensing sites. Liquid was found in clouds with temperatures down to -30 C, the coldest cloud top temperature below -40 C sampled by the aircraft. Remote sensing instruments suggest that ice was present in low concentrations, mostly concentrated in precipitation shafts, although there are indications of light ice precipitation present below the optically thick single-layer clouds. The prevalence of liquid down to these low temperatures could potentially be explained by the relatively low measured ice nuclei concentrations.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island in the Bahamas during August - September, 1998 as a part of the third Convection and Moisture Experiment (CAMEX-3) which focussed on hurricane development and tracking. During the period August 21 - 24, hurricane Bonnie passed near Andros Island and influenced the water vapor and cirrus cloud measurements acquired by the SRL. Two drying signatures related to the hurricane were recorded by the SRL (Scanning Raman Lidar) and other sensors. Cirrus cloud optical depths (at 351 nm) were also measured during this period. Optical depth values ranged from approximately 0.01 to 1.4. The influence of multiple scattering on these optical depth measurements was studied with the conclusion that the measured values of optical depth are less than the actual value by up to 20% . The UV/IR cirrus cloud optical depth ratio was estimated based on a comparison of lidar and GOES measurements. Simple radiative transfer model calculations compared with GOES satellite brightness temperatures indicate that satellite radiances are significantly affected by the presence of cirrus clouds if IR optical depths are approximately 0.02 or greater. This has implications for satellite cirrus detection requirements.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-29
    Description: The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island in the Bahamas during August - September, 1998 as a part of the third Convection and Moisture Experiment (CAMEX-3) which focussed on hurricane development and tracking. During the period August 21 - 24, hurricane Bonnie passed near Andros Island and influenced the water vapor and cirrus cloud measurements acquired by the SRL. Two drying signatures related to the hurricane were recorded by the SRL and other sensors. Cirrus cloud optical depths (at 351 nm) were also measured during this period. Optical depth values ranged from less than 0.01 to 1.5. The influence of multiple scattering on these optical depth measurements was studied. A correction technique is presented which minimizes the influences of multiple scattering and derives information about cirrus cloud optical and physical properties. The UV/IR cirrus cloud optical depth ratio was estimated based on a comparison of lidar and GOES measurements. Simple radiative transfer model calculations compared with GOES satellite brightness temperatures indicate that satellite radiances are significantly affected by the presence of cirrus clouds if IR optical depths are approximately 0.005 or greater. Using the ISCCP detection threshold for cirrus clouds on the GOES data presented here, a high bias of up to 40% in the GOES precipitable water retrieval was found.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: The Tropical Rainfall Measuring Mission (TRMM) satellite was successfully launched in November 1997.The main purpose of TRMM is to sample tropical rainfall using the first active spaceborne precipitation radar. To validate TRMM satellite observations, a comprehensive Ground Validation (GV) Program has been implemented. The primary goal of TRMM GV is to provide basic validation of satellite-derived precipitation measurements over monthly climatologies for the following primary sites: Melbourne, FL; Houston, TX; Darwin, Australia- and Kwajalein Atoll, RMI As part of the TRMM GV effort, research analysts at NASA Goddard Space Flight Center (GSFC) generate standardized rainfall products using quality-controlled ground-based radar data from the four primary GV sites. This presentation will provide an overview of TRMM GV climatological processing and product generation. A description of the data flow between the primary GV sites, NASA GSFC, and the TRMM Science and Data Information System (TSDIS) will be presented. The radar quality control algorithm, which features eight adjustable height and reflectivity parameters, and its effect on monthly rainfall maps, will be described. The methodology used to create monthly, gauge-adjusted rainfall products for each primary site will also be summarized. The standardized monthly rainfall products are developed in discrete, modular steps with distinct intermediate products. A summary of recently reprocessed official GV rainfall products available for TRMM science users will be presented. Updated basic standardized product results involving monthly accumulation, Z-R relationship, and gauge statistics for each primary GV site will also be displayed.
    Keywords: Meteorology and Climatology
    Type: First European Conference on Radar Meteorology (ERAD); Sep 04, 2000 - Sep 08, 2000; Bologna,; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-10
    Description: The recent identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water [1,2], and the importance of such features to the search for water on Mars, highlights the need for appropriate terrestrial analogs in order to prepare for upcoming radar missions targeting these and other water-related features. Climatic, hydrological, and geological conditions in the McMurdo Dry Valleys of Antarctica are analogous in many ways to those on Mars, and a number of ice-related features in the Dry Valleys may have direct morphologic and compositional counterparts on Mars.
    Keywords: Meteorology and Climatology
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: A one-week in situ intercomparison campaign was completed on the Rice University campus for measuring HCHO using three different techniques, including a novel optical sensor based on difference frequency generation (DFG) operating at room temperature. Two chemical derivatization methods, 2,4-dinitrophenylhydrazine (DNPH) and o-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA), were deployed during the daylight hours for three- to four-hour time-integrated samples. A real-time optical sensor based on laser absorption spectroscopy was operated simultaneously, including nighttime hours. This tunable spectroscopic source based on difference frequency mixing of two fiber-amplified diode lasers in periodically poled LiNb03 (PPLN) was operated at 3.5315 micrometers (2831.64 cm 1) to access a strong HCHO ro-vibrational transition free of interferences from other species. The results showed a bias of -1.7 and -1.2 ppbv and a gross error of 2.6 and 1.5 ppbv for DNPH and PFBHA measurements, respectively, compared with DFG measurements. These results validate the DFG sensor for time-resolved measurements of HCHO in urban areas.
    Keywords: Meteorology and Climatology
    Type: Geophysical research letters (ISSN 0094-8276); Volume 27; 14; 2093-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-11
    Description: The large horizontal extent, location in the cold upper troposphere, and ice composition make cirrus clouds important modulators of the earth's radiation budget and climate. Cirrus cloud microphysical properties are difficult to measure and model because they are inhomogeneous in nature and their ice crystal size distribution and habit are not well characterized. Accurate retrievals of cloud properties are crucial for improving the representation of cloud scale processes in large-scale models and for accurately predicting the earth's future climate. A number of passive and active remote sensing retrieval algorithms exist for estimating the microphysical properties of upper tropospheric clouds. We believe significant progress has been made in the evolution of these retrieval algorithms in the last decade, however, there is room for improvement. Members of the Atmospheric Radiation measurement program (ARM) Cloud properties Working Group are involved in an intercomparison of optical depth(tau), ice water path, and characteristic particle size in clouds retrieved using ground-based instruments. The goals of this intercomparison are to evaluate the accuracy of state-of-the-art algorithms, quantify the uncertainties, and make recommendations for improvement.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1 E half-power width (two-way) across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the incidence angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two-dimensional FFT, and Doppler corrected. The open-ocean data were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving slowly to the north. Individual waves with heights up to 18 m were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction. At some positions there were three different wave fields of comparable energy crossing each other. The NOAA aircraft spent over five hours within 180 km of the hurricane Bonnie eye, and made five eye penetrations. A 3-minute animation of the directional wave spectrum spatial variation over this period will be shown as well as summary plots of the wave field spatial variation. On 26 August 1998, the NOAA aircraft flew at 2.2 km height when hurricane Bonnie was making landfall near Wilmington, NC, documenting the directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.
    Keywords: Meteorology and Climatology
    Type: 54th Interdepartmental Hurricane Conference; Feb 14, 2000 - Feb 18, 2000; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-17
    Description: The primary function of the TRMM Ground Validation (GV) Program is to create GV rainfall products that provide basic validation of satellite-derived precipitation measurements for select primary sites. Since the successful 1997 launch of the TRMM satellite, GV rainfall estimates have demonstrated systematic improvements directly related to improved radar and rain gauge data, modified science techniques, and software revisions. Improved rainfall estimates have resulted in higher quality GV rainfall products and subsequently, much improved evaluation products for the satellite-based precipitation estimates from TRMM. This presentation will demonstrate how TRMM GV rainfall products created in a semi-automated, operational environment have evolved and improved through successive generations. Monthly rainfall maps and rainfall accumulation statistics for each primary site will be presented for each stage of GV product development. Contributions from individual product modifications involving radar reflectivity (Ze)-rain rate (R) relationship refinements, improvements in rain gauge bulk-adjustment and data quality control processes, and improved radar and gauge data will be discussed. Finally, it will be demonstrated that as GV rainfall products have improved, rainfall estimation comparisons between GV and satellite have converged, lending confidence to the satellite-derived precipitation measurements from TRMM.
    Keywords: Meteorology and Climatology
    Type: Frist European Confernce on Radar Meteorology (ERAD); Sep 04, 2000 - Sep 08, 2000; Bologna,; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-18
    Description: The Geoscience Laser Altimeter System (GLAS) launched in 2003 is the first polar orbiting satellite lidar. The instrument was designed for high performance observations of the distribution and optical scattering cross sections of clouds and aerosol. The backscatter lidar operates at two wavelengths, 532 and 1064 nm. Both receiver channels meet and exceed their design goals, and beginning with a two month period through October and November 2003, an excellent global lidar data set now exists. The data products for atmospheric observations include the calibrated, attenuated backscatter cross section for cloud and aerosol; height detection for multiple cloud layers; planetary boundary layer height; cirrus and aerosol optical depth and the height distribution of aerosol and cloud scattering cross section profiles. The data sets are now in open release through the NASA data distribution system. The initial results on global statistics for cloud and aerosol distribution has been produced and in some cases compared to other satellite observations. The sensitivity of the cloud measurements is such that the 70% global cloud coverage result should be the most accurate to date. Results on the global distribution of aerosol are the first that produce the true height distribution for model inter-comparison.
    Keywords: Meteorology and Climatology
    Type: AMS 85th Annual Meeting; Jan 09, 2005 - Jan 13, 2005; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...