ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (94)
  • 2000-2004  (2)
  • 1
    Publication Date: 2010-03-25
    Print ISSN: 1616-7341
    Electronic ISSN: 1616-7228
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Royal Meteorological Society
    In:  Quarterly Journal of the Royal Meteorological Society, 138 . pp. 1970-1982.
    Publication Date: 2019-09-23
    Description: Influences from the Tropics, the stratosphere and the specification of observed sea surface temperature and sea-ice (SSTSI) on Northern Hemisphere winter mean circulation anomalies during the period 1960/61 to 2001/02 are studied using a relaxation technique applied to the ECMWF model. On interannual time-scales, the Tropics strongly influence the Pacific sector but also the North Atlantic sector, although weakly. The stratosphere is found to be influential on the North Atlantic Oscillation (NAO) on interannual time-scales but is less important over the Pacific sector. Adding the observed SSTSI to the tropical relaxation runs generally improves the model performance on interannual time-scales but degrades/enhances the model’s ability to capture the 42-year trend over the Pacific/Atlantic sector. While relaxing the stratosphere to the reanalysis fails to capture the trend over the whole 42-year period, the stratosphere is shown to be influential on the upward trend of the NAO index from 1965 to 1995, but with reduced amplitude compared to previous studies. Influence from the Tropics is found to be important for the trend over both time periods and over both sectors although, across all experiments, we can account for only 30% of the amplitude of the hemispheric trend. Copyright c� 2012 Royal Meteorological Society
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 42 (5). pp. 824-839.
    Publication Date: 2018-04-12
    Description: The mechanisms involved in setting the annual cycle of the Florida Current transport are revisited using an adjoint model approach. Adjoint sensitivities of the Florida Current transport to wind stress reproduce a realistic seasonal cycle with an amplitude of ~1.2 Sv (1 Sv ≡ 106 m3 s−1). The annual cycle is predominantly determined by wind stress forcing and related coastal upwelling (downwelling) north of the Florida Strait along the shelf off the North American coast. Fast barotropic waves propagate these anomalies southward and reach the Florida Strait within a month, causing an amplitude of ~1 Sv. Long baroclinic planetary Rossby waves originating from the interior are responsible for an amplitude of ~0.8 Sv but have a different phase. The sensitivities corresponding to the first baroclinic mode propagate westward and are highly influenced by topography. Considerable sensitivities are only found west of the Mid-Atlantic Ridge, with maximum values at the western shelf edge. The second baroclinic mode also has an impact on the Florida Current variability, but only when a mean flow is present. A second-mode wave train propagates southwestward from the ocean bottom on the western side of the Mid-Atlantic Ridge between ~36° and 46°N and at Flemish Cap, where the mean flow interacts with topography, to the surface. Other processes such as baroclinic waves along the shelf and local forcing within the Florida Strait are of minor importance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 42 . pp. 725-747.
    Publication Date: 2018-04-12
    Description: The residual effect of surface gravity waves on mean flows in the upper ocean is investigated using thickness weighted mean (TWM) theory applied in a vertically Lagrangian and horizontally Eulerian coordinate system. Depth-dependent equations for the conservation of volume, momentum, and energy are derived. These equations allow for (i) finite amplitude fluid motions, (ii) the horizontal divergence of currents and (iii) a concise treatment of both the kinematic and viscous boundary conditions at the sea surface. Under the assumptions of steady and monochromatic waves and a uniform turbulent viscosity, the TWM momentum equations are used to illustrate the pressure- and viscosity-induced momentum fluxes through the surface that are implicit in previous studies of the wave-induced modification of the classical Ekman spiral problem. The TWM approach clarifies, in particular, the surface momentum flux associated with the so-called virtual wave stress of Longuet-Higgins. Overall the TWM framework can be regarded as an alternative to the three-dimensional Lagrangian mean framework of Pierson. Moreover the TWM framework can be used to include the residual effect of surface waves in large-scale circulation models. In specific models that carry the TWM velocity appropriate for advecting tracers as their velocity variable, the turbulent viscosity term should be modified so that the viscosity acts only on the Eulerian mean velocity.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 118 . pp. 2761-2773.
    Publication Date: 2018-02-27
    Description: A realistic primitive-equation model of the Southern Ocean at eddying spatial resolution is used to examine the effect of ocean-surface-velocity dependence of the wind stress on the strength of near-inertial oscillations. Accounting for the ocean-surface-velocity dependence of the wind stress leads to a large reduction of wind-induced near-inertial energy of approximately 40 percent and of wind power input into the near-inertial frequency band of approximately 20 percent. A large part of this reduction can be explained by the leading-order modification to the wind stress if the ocean-surface velocity is included. The strength of the reduction is shown to be modulated by the inverse of the ocean-surface-mixed-layer depth. We conclude that the effect of surface-velocity dependence of the wind stress should be taken into account when estimating the wind-power input into the near-inertial frequency band and when estimating near-inertial energy levels in the ocean due to wind forcing.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: The 5th International Workshop on Modeling the Ocean (IWMO http://www.uib.no/en/IWMO2013/-58927/iwmo-2013-bergen-norway) was held in June 17–20, in Bergen, Norway. The historic city of Bergen is the gateway to the fjords and a center for oceanic research. The workshop was hosted by the University of Bergen and also sponsored by the Research Council of Norway. Approximately 80 researchers worldwide participated in the workshop. Professor Mellor, Princeton University, gave the keynote lecture. The 5th IWMO meeting in Bergen was the first IWMO held in Europe, followed on the footsteps of previous meetings, IWMO-2009 in Taipei, Taiwan (Oey et al. 2010a, b), IWMO-2010 in Norfolk, USA (Ezer et al. 2011), IWMO-2011 in Qingdao, China (Oey et al. 2013a), and IWMO-2012 in Yokohama, Japan (Oey et al. 2013b). The participants presented approximately 60 oral talks and 20 posters, covering a wide range of ocean modeling and data analysis topics, as described below. In the spirit of promoting young s ...
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-15
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-01-15
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-04
    Description: This study focuses on an important aspect of air–sea interaction in models, namely, large-scale, spurious heat fluxes due to false pathways of the Gulf Stream and North Atlantic Current (NAC) in the “storm formation region” south and east of Newfoundland. Although high-resolution eddy-resolving models show some improvement in this respect, results are sensitive to poorly understood, subgrid-scale processes for which there is currently no complete, physically based parameterization. A simple method to correct an ocean general circulation model (OGCM), acting as a practical substitute for a physically based parameterization, is explored: the recently proposed “semiprognostic method,” a technique for adiabatically adjusting flow properties of a hydrostatic OGCM. The authors show that application of the method to an eddy-permitting model of the North Atlantic Ocean yields more realistic flow patterns and watermass characteristics in the Gulf Stream and NAC regions; in particular, spurious surface heat fluxes are reduced. Four simple modifications to the method are proposed, and their benefits are demonstrated. The modifications successfully account for three drawbacks of the original method: reduced geostrophic wave speeds, damped mesoscale eddy activity, and spurious interaction with topography. It is argued that use of a corrected (eddy permitting) OGCM in a coupled modeling system for simulating present climate (as now becomes possible because of increasing computer power) should lead to a more realistic simulation in regions of strong air–sea interaction as compared with that obtained with an uncorrected model. The method is also well suited for the simulation of the uptake and transport of passive tracers, such as anthropogenic carbon dioxide or components of ecosystem models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-01-15
    Description: A swarm experiment with seven gliders equipped with sensors measuring pressure, temperature, salinity, oxygen and chlorophyll fluorescence was conducted in early 2013 within the upwelling region off Peru. The goal was to study the role of meso- and submesoscale proccesses for the near-coastal oxygen ventilation of the Peruvian oxygen minimum zone. Each glider carried out about one dive per hour measuring two multi-parameter profiles with a lateral resolution less than 300 m. About 15.000 profiles were recorded during the two-months deployment within a small spatial area to capture both the temporal and spatial variability of the physical and biochemical parameters. Two main results are presented in the talk: 1) The formation of a low oxygen mode water eddy within the Peru Chile Undercurrent is observed. The near-coastal horizontal circulation off Peru at 12°S changes significantly over the two months of observation. In early January, we observe a pronounced Peru-Chile Undercurrent with maximal poleward velocities of 25 cm/s in 100 - 200 m depth. A week later the circulation start to change and a mode water eddy forms within the glider field. The physical and biogeochemical eddy properties and impacts on the near-coastal salinity and oxygen distribution are described in detail. 2) During an upwelling event the formation and decay of a submesoscale cold water filament is present in the sea surface temperature and glider data. Near the surface, non-density compensated salinity and oxygen intrusions are observed which seem to be associated with this feature. These anomalies reach well below the mixed layer into the thermocline and frontal subduction is suggested as their formation mechanism.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...