ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (19)
Collection
Years
Year
  • 1
    Publication Date: 2020-11-26
    Description: The CROP-11 deep seismic profile across the central Apennines, Italy, reveals a previously unknown, mid-crustal antiform here interpreted as a fault-bend fold-like structure. The seismic facies and gravity signature suggest that this structure consists of low-grade metamorphic rocks. Geomorphological, stratigraphic and tectonic evidence in the overlying shallow thrusts suggests that this structure developed in early to mid-Messinian time and grew out of sequence in late Messinian– Pliocene time. The out-of-sequence growth may reflect a taper subcriticality stage of the Apenninic thrust wedge, which induced renewed contraction in the rear.
    Description: Published
    Description: 583–586
    Description: open
    Keywords: CROP project ; seismic reflection profile ; mid-crustral folding ; central Apennines ; deep crust ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 543952 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-22
    Description: The huge loss of lives and the destruction caused by the 2004 Indian Ocean tsunami dramatically showed the need for a reassessment of tsunami hazard and risk in coastal regions prone to this threat. It is known that many countries facing the Mediterranean basin have been affected by several tsunamis in the past, some of which were catastrophic over large areas. Our work aims to quantitatively address the problem of the tsunami hazard and risk assessment by means of numerical simulation of earthquake-induced tsunami scenarios. The work is part of a larger project, funded by the Italian Department for Civil Defense, whose main goal is the evaluation of the seismogenic potential and of the probability of occurrence of strong earthquakes in Italy. Here we show some preliminary results concerning the analysis of several simulated tsunami scenarios. On the basis of tsunami catalogues and seismogenic source databases, we selected a set of tectonic sources that, owing to their location and/or size, are believed to be especially hazardous for the Italian coasts. Once the geometrical parameters of the fault are defined (on the basis of geological and seismological evidence and constraints), we compute the coseismic vertical displacement of the seafloor, which represents the initial condition of the tsunami propagation problem. Then we solve the propagation equations (the wide used shallow-water equations) through a finite difference technique. The main outputs of a single run are the wavefields at desired times, useful to estimate the arrival times of the wavefronts, and the maximum water elevation field that gives at-glance information on the tsunami energy focusing during the whole propagation. Furthermore, for those stretches of coast that are particularly vulnerable (owing to high population density, presence of important infrastructures, etc.) we make a more detailed analysis of the wave impact. Among the tectonic sources we studied, the 365 AD Crete earthquake indeed represents a serious threat for the Italian coastlines facing the Ionian Sea, where we estimated a wave height exceeding 1-2 meters along hundreds of km of the coast. Furthermore, the first wavefront from this source is expected to reach the coasts of southern Italy in less than 1 hour from the origin time of the parent earthquake. This finding stresses the need for an especially early warning by the geophysical monitoring systems and by the Civil Defense structures.
    Description: Convenzione INGV - DPC 2004-2006 Progetti Sismologici e Vulcanologici di interesse per il Dipartimento della Protezione Civile Progetto S2 - Valutazione del potenziale sismogenetico e probabilità dei forti terremoti in Italia
    Description: Published
    Description: Vienna, Austria
    Description: open
    Keywords: Tsunami hazard ; Risk assessment ; Seismogenic source ; Mediterranean Sea ; Southern Italy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Format: 3346130 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We calculated the impact on Southern Italy of a large set of tsunamis resulting from earthquakes generated by major fault zones of the Mediterranean Sea. Our approach merges updated knowledge on the regional tectonic setting and scenario-like calculations of expected tsunami impact. We selected three potential source zones located at short, intermediate and large distance from our target coastlines: the Southern Tyrrhenian thrust belt; the Tell-Atlas thrust belt; and the western Hellenic Arc. For each zone we determined a Maximum Credible Earthquake and described the geometry, kinematics and size of its associated Typical Fault. We then let the Typical Fault float along strike of its parent source zone and simulated all tsunamis it could trigger. Simulations are based on the solution of the nonlinear shallow water equations through a finite-difference technique. For each run we calculated the wave fields at desired simulation times and the maximum water elevation field, then produced travel-time maps and maximum wave-height profiles along the target coastlines. The results show a highly variable impact for tsunamis generated by the different source zones. For example, a large Hellenic Arc earthquake will produce a much higher tsunami wave (up to 5 m) than those of the other two source zones (up to 1.5 m). This implies that tsunami scenarios for Mediterranean Sea countries must necessarily be computed at the scale of the entire basin. Our work represents a pilot study for constructing a basin-wide tsunami scenario database to be used for tsunami hazard assessment and early warning.
    Description: Italian Civil Defense; Project “Development of new technologies for the protection of the Italian territory from natural hazards” funded by the Italian Ministry of University and Research
    Description: Published
    Description: B01301
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: JCR Journal
    Description: partially_open
    Keywords: Tsunamis ; Mediterranean Sea ; Seismotectonics ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The deep structures of the Central–Southern Apennines are analysed on the basis of the regional component of gravity anomalies, obtained applying a stripping technique. This procedure allows the accurate removal of the gravimetric effect of the three-dimensional shallow (within the first 10 km) geological bodies from the observed Bouguer anomaly. The resulting anomaly map differs quite significantly from the Bouguer anomaly map, providing new constraints on the nature of the deeper part of the crust and on the upper mantle. The stripping reveals that the regional gravity lows are shifted westward in comparison with Bouguer anomaly lows. Moreover, the gravimetric pattern indicates a lack of cylindrism for the deep structures of the Apennine Chain, which in the study area can be roughly divided into three main segments. The observed differences between the gravity anomalies pattern of the Central Apennines and that of the Southern Apennines are marked. The integration of gravimetric results with other geophysical data suggests that: (i) a ramp-dominated style for the buried Apulia (Adria) units and part of the underlying basement is compatible with gravimetric data and (ii) most of the regional gravity anomalies in the Central Apennines seem to originate within the lower crust.
    Description: Published
    Description: 73-91
    Description: open
    Keywords: Bouguer anomalies ; Rock density ; Stripping technique ; Deep crust ; Southern Italy ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1098583 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Istituto Nazionale di Oceanografia e Geofisica Sperimentele, Trieste, Italy
    Publication Date: 2017-04-04
    Description: The purpose of this work is to present a gravity reconstruction of the deepest portion of the CROP 11 seismic line. The 2D gravity modelling is constrained by DSS data and by deep reflection seismic data obtained along the CROP 11 line. The role of the regional gravity anomaly trend of Central Italy as an independent constraint for the geological interpretation of the seismic line is also highlighted. The main gravity low (Fucino Plain) in the area is compensated by the combined effect of a regional deepening of both the Moho and the top of the crystalline basement, while the gravity low, located east towards the Maiella Mt., seems to originate between a 4 and 10 km depth. A lower density can be assigned to the western portion of the mantle with respect to the eastern side. The westernmost part of the upper crust in the model also shows a slightly lower density. The crystalline basement is not likely to be heavily involved in the deformation of the chain; ramp-and-flat deformations are present down to a depth of 20 km, i.e. the “highly reflective body” on the western side of the profile, which does not have a marked gravity imprint and should be due to relatively “light” sedimentary units.
    Description: Published
    Description: 447-454
    Description: open
    Keywords: CROP project ; 2D gravity model ; Central Apennines ; Moho depth ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 652430 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: IN THE FILE
    Description: Submitted
    Description: open
    Keywords: Gravity ; CROP04 ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Format: 8792737 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: La storia della Calabria è una storia lunga – molto più lunga di quanto qualunque essere umano possa immaginare, aggiungeremmo noi geologi – di grandi e piccoli terremoti. Catastrofi improvvise e catastrofi parzialmente annunciate, terremoti improvvisi e isolati e sequenze interminabili che sembravano non voler lasciare in piedi nulla di questa regione. Lo spaventoso livello di sismicità della Calabria, di cui qualunque calabrese è testimone almeno indiretto, è oggi quantomeno ben accertato da ricerche sempre più specialistiche e dettagliate. Due degli elementi fondamentali per descrivere la sismicità calabrese consistono nello studio dei terremoti del passato e nello studio della geologia e tettonica di questa regione, riconosciuta da sempre come uno dei luoghi maggiormente attivi di tutto il Mediterraneo. Questi elementi confluiscono in modelli di pericolosità sismica (Gruppo di Lavoro MPS, 2004; fig. 1), che puntualmente fotografano una propensione di questa terra a dare terremoti più forti e più frequenti di quanto non avvenga in qualunque altra zona della penisola. Questa relazione tenta di tratteggiare sinteticamente questa forte propensione alla sismicità, muovendosi tra le caratteristiche geologiche della Calabria e la sua poco invidiabile storia sismica. La relazione si avvale di risultati di ricerche recenti e recentissime, condotte sia presso l’Istituto Nazionale di Geofisica e Vulcanologia (INGV), sia dalla comunità sismologica nazionale che fa riferimento alle università. La relazione privilegia ampiamente il materiale iconografico basato su tali ricerche. Per ulteriori approfondimenti si raccomandano i lettori di consultare il sito Internet dell’INGV (www.ingv.it), che nelle sue pagine interne offre numerosissime informazioni di facile accessibilità e comprensione.
    Description: Published
    Description: 181-206
    Description: open
    Keywords: earthquake ; calabria 1905 ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Format: 2487394 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: We calculated the expected impact on the Italian coast of the Adriatic Sea of a large set of tsunamis resulting from potential earthquakes generated by major fault zones. Our approach merges updated knowledge on the regional tectonics and scenario-like calculations of expected tsunami impact. We selected six elongated potential source zones. For each of them we determined a Maximum Credible Earthquake and the associated Typical Fault, described by its size, geometry and kinematics. We then let the Typical Fault float along strike of its parent source zone and simulated all tsunamis it could generate. Simulations are based on the solution of the nonlinear shallow water equations through a finite-difference technique. For each run we calculated the wave fields at specified simulation times and the maximum water height field (above mean sea level), then generated travel-time maps and maximum wave height profiles along the target coastline. Maxima were also classified in a three-level code of expected tsunami threat. We found that the southern portion of Apulia facing Albania and the Gargano promontory are especially prone to the tsunami threat. We also found that some bathymetric features are crucial in determining the focalization-defocalization of tsunami energy. We suggest that our results be taken into account in the design of early-warning strategies.
    Description: INGV-DPC Project S2 “Assessing the seismogenic potential and the probability of strong earthquakes in Italy”
    Description: Published
    Description: 2117-2142
    Description: 3.2. Tettonica attiva
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: partially_open
    Keywords: tsunamis ; Adriatic Sea ; seismotectonics ; active faulting ; seismic hazard ; tsunami hazard ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-02-03
    Description: The purpose of this work is to present a gravity reconstruction of the deepest portion of the CROP 11 seismic line. The 2D gravity modelling is constrained by DSS data and by deep reflection seismic data obtained along the CROP 11 line. The role of the regional gravity anomaly trend of Central Italy as an independent constraint for the geological interpretation of the seismic line is also highlighted. The main gravity low (Fucino Plain) in the area is compensated by the combined effect of a regional deepening of both the Moho and the top of the crystalline basement, while the gravity low, located east towards the Maiella Mt., seems to originate between a 4 and 10 km depth. A lower density can be assigned to the western portion of the mantle with respect to the eastern side. The westernmost part of the upper crust in the model also shows a slightly lower density. The crystalline basement is not likely to be heavily involved in the deformation of the chain; ramp-and-flat deformations are present down to a depth of 20 km, i.e. the “highly reflective body” on the western side of the profile, which does not have a marked gravity imprint and should be due to relatively “light” sedimentary units.
    Description: Unpublished
    Description: Rome, Italy
    Description: open
    Keywords: CROP Project ; 2D gravity modelling ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Format: 9844224 bytes
    Format: application/vnd.ms-powerpoint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-02-03
    Description: The backbone of the Southern Apennines is perhaps the largest seismic moment release area in Italy. The region is dominated by an extensional regime dating back to the Middle Pleistocene, with maximum extension striking SW-NE (i.e. orthogonal to the mountain belt). The full length (~ 200 km) of the mountain range has been the locus of several destructive earthquakes occurring in the uppermost 10-12 km of the crust. This seismicity is due to a well documented normal faulting mechanism. Instrumental earthquakes (e.g. 5 May 1990, 31 Oct 2002, 1 Nov 2002; all M 5.8) that have occurred in the foreland, east of the Southern Apennines, have posed new questions concerning seismogenic processes in southern Italy. Although of moderate magnitude, these events unveiled the presence of E-W striking, deeper (13-25 km) strike-slip faults. Recent studies suggest that these less known faults belong to inherited shear zones with a multi-phase tectonic history, the most recent phase being a right-lateral reactivation. The direction of the maximum horizontal extension of these faults (in a transcurrent regime) coincides with the maximum horizontal extension in the core of the Southern Apennines (in an extensional regime) and both are compatible with the general framework provided by the Africa-Europe convergence. However, the regional extent along strike of the E-W shear zones poses the issue of their continuity from the foreland towards the thrust-belt. The 1456 (M 6.9) and 1930 (M 6.7) earthquakes, that occurred just east of the main extensional axis, were caused by faults having a strike intermediate between the E-W, deeper strike-slip faults in the foreland and the NW-SE-trending, shallower normal faults in the extensional belt. Hence, the location and geometry of these seismogenic sources suggests that there could be a transition zone between the crustal volumes affected by the extensional and transcurrent regimes. To image such transition, we built a 3D model that incorporates data available from surface and subsurface geology (published and unpublished), seismogenic faults, seismicity, focal mechanisms, and gravity anomalies. We explored the mechanisms of fault interaction in the Southern Apennines between the extensional upper portion and the transcurrent deeper portion of the seismogenic layer. In particular, we studied (a) how the reactivation of regional shear zones interacts with an adjacent, although structurally independent, extensional belt; (b) at what depth range the interaction occurs; and (c1) whether oblique slip in earthquakes like the 1930 event is merely due to the geometry of the causative fault, or (c2) such geometry and kinematics are the result of oblique slip due to fault interaction. We propose that (a) the 1456 and 1930 earthquakes are the expression of the transition between the two tectonic regimes, and that (b) these events can be seen as templates of the seismogenic oblique-slip faulting that occurs at intermediate depths between the shallower extensional faults and the deeper strike-slip faults. These findings suggest that a transtensional faulting mechanism governs the release of major earthquakes in the transition zone between extensional and transcurrent domains.
    Description: Unpublished
    Description: San Francisco (CA - USA)
    Description: open
    Keywords: seismogenic sources ; southern Apennines ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Format: 833526 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...