ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (11)
  • 1
    Publication Date: 2007-10-01
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-02-01
    Print ISSN: 0924-7963
    Electronic ISSN: 1879-1573
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-27
    Description: NASA NEESPI (Northern Eurasia Earth Science Partnership Initiative) data portal is a NASA funded project that focuses on collecting satellite remote sensing data, providing tools, information, and services in support of NEESPI scientific objectives (Leptoukh, et al., 2007). The data can be accessed online through anonymous ftp, through an advanced data searching and ordering system Mirador that uses keywords to find data quickly in a Google-like interface, and through the Goddard Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni). The portal provides preprocessed data from different satellite sensors and numerical models to the same spatial and temporal resolution and the same projection so that the data can be used easily to perform inter-comparison or relationship studies. In addition, it provides parameter and spatially subsetted data for regional studies. Studies of regional carbon, hydrology, aerosols in non-boreal Europe and their interactions with global climate are very challenging research topics. The NASA NEESPI data portal makes many satellite data available for such studies, including information on land cover types, fire, vegetation index, aerosols, land surface temperature, soil moisture, precipitation, snow/ice, and other parameters. This paper will introduce the features and products available in the system, focusing on the online data 1 tool, Giovanni NEESPI. An example that explores different data through Giovanni NEESPI in temperate region of non-boreal Europe will be presented.
    Keywords: Meteorology and Climatology
    Type: NATO Advance Workshop: "Regional Aspects of Climate-Terrestrial-Hydrologic Interactions in Eastern Europe" (NEESPI Regional Non-boreal Europe Meeting); 23028 Aug. 2008; Odessa; Ukraine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The Goddard Earth Sciences Data and Information Services Center (GES DISC) Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) provides rapid access to, and enables effective utilization of, remotely-sensed data that are applicable to investigations of coastal environmental processes. Data sets in Giovanni include precipitation data from the Tropical Rainfall Measuring Mission (TRMM), particularly useful for coastal storm investigations; ocean color radiometry data from the Sea-viewing Wide Field-of-view Sensor (SeaWIFS) and Moderate Resolution Imaging Spectroradiometer (MODIS), useful for water quality evaluation, phytoplankton blooms, and terrestrial-marine interactions; and atmospheric data from MODIS and the Advanced Infrared Sounder (AIRS), providing the capability to characterize atmospheric variables. Giovanni provides a simple interface allowing discovery and analysis of environmental data sets with accompanying graphic visualizations. Examples of Giovanni investigations of the coastal zone include hurricane and storm impacts, hydrologically-induced phytoplankton blooms, chlorophyll trend analysis, and dust storm characterization. New and near-future capabilities of Giovanni will be described.
    Keywords: Earth Resources and Remote Sensing
    Type: European Association of Remote Sensing Laboratories (EARSeL) 2007 Annaul Symposium; Jun 04, 2007 - Jun 06, 2007; Bolzano; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Goddard Earth Sciences Data and Information Services Center (GES DISC) Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) provides rapid access to, and enables effective utilization of, remotely-sensed data that are applicable to investigations of coastal environmental processes. Data sets in Giovanni include precipitation data from the Tropical Rainfall Measuring Mission (TRMM), particularly useful for coastal storm investigations; ocean color radiometry data from the Sea-viewing Wide Field-of-view Sensor (SeaWIFS) and Moderate Resolution Imaging Spectroradiometer (MODIS), useful for water quality evaluation, phytoplankton blooms, and terrestrial-marine interactions; and atmospheric data from MODIS and the Advanced Infrared Sounder (AIRS), providing the capability to characterize atmospheric variables. Giovanni provides a simple interface allowing discovery and analysis of environmental data sets with accompanying graphic visualizations. Examples of Giovanni investigations of the coastal zone include hurricane and storm impacts, hydrologically-induced phytoplankton blooms, chlorophyll trend analysis, and dust storm characterization. New and near-future capabilities of Giovanni will be described.
    Keywords: Earth Resources and Remote Sensing
    Type: European Association of Remote Sensing Laboratories (EARSeL) 2007 Annual Symposium; Jun 04, 2007 - Jun 06, 2007; Bolzano; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The NASA Goddard Earth Science Data and Information Services Center (GES DISC) Giovanni system [GES DISC Interactive Online Visualization ANd aNalysis Infrastructure] has significant capabilities for oceanographic education and independent research utilizing ocean color radiometry data products. Giovanni allows Web-based data discovery and basic analyses, and can be used both for guided illustration of a variety of marine processes and phenomena, and for independent research investigations. Giovanni's capabilities are particularly suited for advanced secondary school science and undergraduate (college) education. This presentation will describe a variety of ways that Giovanni can be used for oceanographic education. Auxiliary information resources that can be utilized will also be described. Several testimonies of Giovanni usage for instruction will be provided, and a recent case history of Giovanni utilization for instruction and research at the undergraduate level is highlighted.
    Keywords: Oceanography
    Type: European Association of Remote Sensing Laboratories (EARSeL) 2007 Annual Symposium; Jun 04, 2007 - Jun 06, 2007; Bolzano; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The availability of a nearly-continuous record of remotely-sensed chlorophyll a data (chl a) from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission, now longer than ten years, enables examination of time-series trends for multiple global locations. Innovative data analysis technology available on the World Wide Web facilitates such analyses. In coastal regions influenced by river outflows, chl a is not always indicative of actual trends in phytoplankton chlorophyll due to the interference of colored dissolved organic matter and suspended sediments; significant chl a timeseries trends for coastal regions influenced by river outflows may nonetheless be indicative of important alterations of the hydrologic and coastal environment. Chl a time-series analysis of nine marine regions influenced by river outflows demonstrates the simplicity and usefulness of this technique. The analyses indicate that coastal time-series are significantly influenced by unusual flood events. Major river systems in regions with relatively low human impact did not exhibit significant trends. Most river systems with demonstrated human impact exhibited significant negative trends, with the noteworthy exception of the Pearl River in China, which has a positive trend.
    Keywords: Earth Resources and Remote Sensing
    Type: EARSeL (European Association of Remote Sensing Laboratories) eProceedings; 8; 2; 114-139
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Studies have indicated that land cover and use changes in Northern Eurasia influence global climate system. However, the procedures are not fully understood and it is challenging to understand the interactions between the land changes in this region and the global climate. Having integrated data collections form multiple disciplines are important for studies of climate and environmental changes. Remote sensed and model data are particularly important die to sparse in situ measurements in many Eurasia regions especially in Siberia. The NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) NEESPI data portal has generated infrastructure to provide satellite remote sensing and numerical model data for atmospheric, land surface, and cryosphere. Data searching, subsetting, and downloading functions are available. ONe useful tool is the Web-based online data analysis and visualization system, Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure), which allows scientists to assess easily the state and dynamics of terrestrial ecosystems in Northern Eurasia and their interactions with global climate system. Recently, we have created a metadata database prototype to expand the NASA NEESPI data portal for providing a venue for NEESPI scientists fo find the desired data easily and leveraging data sharing within NEESPI projects. The database provides product level information. The desired data can be found through navigation and free text search and narrowed down by filtering with a number of constraints. In addition, we have developed a Web Map Service (WMS) prototype to allow access data and images from difference data resources.
    Keywords: Earth Resources and Remote Sensing
    Type: American Geophysical Union 2008 Fall Meeting; Dec 15, 2008 - Dec 19, 2008; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The Modern Era Retrospective-analysis for Research and Applications (MERRA) dataset is a NASA satellite era, 30 year (1979 - present), reanalysis using the Goddard Earth Observing System Data Assimilation System, Version 5 (GEOS-5). The project, run out of NASA's Global Modeling and Assimilation Office at Goddard Space Flight Center, provides the science and application communities with a state-of-the-art global analysis with emphasis on improved estimates of the hydrological cycle over a broad range of weather and climate time scales. MERRA products are generated as a long-term synthesis that places the NASA EOS suite of observations in a climate context. The MERRA analysis is performed at a horizontal resolution of 2/3 longitude x 1/2 latitude (540x361 global gridpoints) with observational analyses every 6 hours. The MERRA output data will include 3 dimensional state fields for every 6 hourly analysis cycle on 42 pressure levels (or 72 terrain following model coordinate levels) from the surface through the stratosphere. Several data products are specifically designed to support chemistry and stratosphere transport modeling. The 2 dimensional surface and atmospheric diagnostics (numbering 259) are being stored on the native grid at 1 hourly intervals. These include radiation and vertical integrals of the atmosphere for water and energy budget studies and also surface diagnostics where the diurnal cycle is important. The one hourly surface and near surface data product will also facilitate research on the integrated analysis of Earth system observations in the land, ocean and cryosphere. The MERRA products are archived and distributed by the Goddard Earth Sciences Data and Information Services Center (GES DISC) through its Modeling DISC Web (MDISC) portal. Multiple data access methods and services are available for MERRA data through MDISC: (1) Mirador offers a quick, comprehensive search of MERRA and all GES DISC archived data holdings, allowing searches on keywords, location names or latitude/longitude box, and date/time, with responses within a few seconds. (2) Giovanni is a GES DISC developed Web application that provides data visualization and analysis online. Giovanni features popular visualizations such as latitude-longitude maps, animations, cross sections, profiles, time series, etc. and some basic statistical analysis functions such as scatter plots and correlation coefficient maps. Users are able to download results in several different formats, including Google Earth. (3) On-the-fly parameter subsetting of data within a spatial/temporal window is provided through a simple select and click Web page. (4) MERRA data are also available via OPeNDAP, GrADS Data Server (GDS) and can be converted to netCDF on the fly.
    Keywords: Earth Resources and Remote Sensing
    Type: American Geophysical Union Meeting; Dec 15, 2008 - Dec 19, 2008; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: As our inventory of Earth science data sets grows, the ability to compare, merge and fuse multiple datasets grows in importance. This requires a deeper data interoperability than we have now. Efforts such as Open Geospatial Consortium and OPeNDAP (Open-source Project for a Network Data Access Protocol) have broken down format barriers to interoperability; the next challenge is the semantic aspects of the data. Consider the issues when satellite data are merged, cross-calibrated, validated, inter-compared and fused. We must match up data sets that are related, yet different in significant ways: the phenomenon being measured, measurement technique, location in space-time or quality of the measurements. If subtle distinctions between similar measurements are not clear to the user, results can be meaningless or lead to an incorrect interpretation of the data. Most of these distinctions trace to how the data came to be: sensors, processing and quality assessment. For example, monthly averages of satellite-based aerosol measurements often show significant discrepancies, which might be due to differences in spatio- temporal aggregation, sampling issues, sensor biases, algorithm differences or calibration issues. Provenance information must be captured in a semantic framework that allows data inter-use tools to incorporate it and aid in the intervention of comparison or merged products. Semantic web technology allows us to encode our knowledge of measurement characteristics, phenomena measured, space-time representation, and data quality attributes in a well-structured, machine-readable ontology and rulesets. An analysis tool can use this knowledge to show users the provenance-related distrintions between two variables, advising on options for further data processing and analysis. An additional problem for workflows distributed across heterogeneous systems is retrieval and transport of provenance. Provenance may be either embedded within the data payload, or transmitted from server to client in an out-of-band mechanism. The out of band mechanism is more flexible in the richness of provenance information that can be accomodated, but it relies on a persistent framework and can be difficult for legacy clients to use. We are prototyping the embedded model, incorporating provenance within metadata objects in the data payload. Thus, it always remains with the data. The downside is a limit to the size of provenance metadata that we can include, an issue that will eventually need resolution to encompass the richness of provenance information required for daata intercomparison and merging.
    Keywords: Computer Programming and Software
    Type: American Geophysical Union Meeting; Dec 15, 2008 - Dec 19, 2008; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...