ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-12-15
    Print ISSN: 0022-3727
    Electronic ISSN: 1361-6463
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-02-01
    Print ISSN: 0006-3495
    Electronic ISSN: 1542-0086
    Topics: Biology , Physics
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of IEE for personal use, not for redistribution. The definitive version was published in IEE Proceedings - Nanobiotechnology 152 (2005): 189-193, doi:10.1049/ip-nbt:20050040.
    Description: Membrane capacitance and membrane conductance values are reported for insulin secreting cells (primary β-cells and INS-1 insulinoma cells) determined using the methods of dielectrophoresis and electrorotation. The membrane capacitance value of 12.57 (± 1.46) mF/m2 obtained for β-cells, and the values 9.96 (± 1.89) mF/m2 to 10.65 (± 2.1) mF/m2 obtained for INS-1 cells, fall within the range expected for mammalian cells. The electrorotation results for the INS-1 cells lead to a value of 36 (± 22) S/m2 for the membrane conductance associated with ion channels, if values in the range 2nS to 3 nS are assumed for the membrane surface conductance. This membrane conductance value falls within the range reported for INS cells obtained using the whole-cell patch-clamp technique. However, the total ‘effective’ membrane conductance value of 601 (± 182) S/m2 obtained for the INS-1 cells by dielectrophoresis is significantly larger (by a factor of around three-fold) than the values obtained by electrorotation. This could result from an increased membrane surface conductance, or increased passive conduction of ions through membrane pores, induced by the larger electric field stresses experienced by cells in the dielectrophoresis experiments.
    Description: This study was financed by a gift from the Denis Robinson Memorial Fund to RP and NIH grants NCRR RR001395 and DK06984 to PJSS.
    Keywords: Electrokinetic measurements ; Membrane capacitance ; Pancreatic beta-cells ; Membrane conductance ; Insulin secreting cells ; Insulinoma cells ; Dielectrophoresis ; Electrorotation ; Mammalian cells ; Ion channels ; Membrane surface conductance ; Whole-cell patch-clamp technique ; Passive conduction ; Membrane pores ; Electric field stresses ; Dielectrophoresis experiments
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 233829 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Institution of Engineering and Technology for personal use, not for redistribution. The definitive version was published in IET Nanobiotechnology 2 (2008): 31-38, doi:10.1049/iet-nbt:20070027.
    Description: Dielectrophoretic forces, generated by radio-frequency voltages applied to micromachined, transparent, indium tin oxide electrodes, have been used to condense suspensions of insulinoma cells (BETA-TC-6 and INS-1) into a 10x10 array of threedimensional cell constructs. Some of these constructs, measuring approximately 150 μm in diameter and 120 μm in height, and containing around 1000 cells, were of the same size and cell density as a typical islet of Langerhans. With the dielectrophoretic force maintained, these engineered cell constructs were able to withstand mechanical shock and fluid flow forces. Reproducibility of the process required knowledge of cellular dielectric properties, in terms of membrane capacitance and membrane conductance, which were obtained by electrorotation measurements. The ability to incorporate fluorescent nanosensors, as probes of cellular oxygen and pH levels, into these ‘pseudo-islets’ was also demonstrated. The footprint of the 10x10 array of cell constructs was compatible with that of a 1536 microtitre plate, and thus amenable to optical interrogation using automated plate reading equipment.
    Description: This study was financed by NIH grants NCRR RR001395 and DK06984 to P.J.S. Smith, the Alix and Denis Robinson Fund, and by the award to R. Pethig of the Eugene and Millicent Bell Tissue Engineering Fellowship at the MBL, Woods Hole.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...