ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (3)
Collection
Years
Year
  • 1
    Publication Date: 2007-05-22
    Description: A local linear stability analysis is performed for a round inviscid jet with constant density that is injected into a uniform crossflow of the same density. The baseflow is obtained from a modified version of the inviscid transverse jet near-field solution of Coelho & Hunt (J. Fluid Mech. vol. 200, 1989, p. 95) which is valid for small values of the crossflow-to-jet velocity ratio λ. A Fourier expansion in the azimuthal direction is used to couple the disturbances with the three-dimensional crossflow. The spatial growth rates of the modes corresponding to the axisymmetric and first helical modes of the free jet as λ → 0 increase as λ increases. The diagonal dominance of the dispersion relation matrix is used as a quantitative criterion to estimate the range of velocity ratios (0 〈 λ 〈 λ c) within which the transverse jet instability can be considered to have a structure similar to that of the free jet. Further, we show that for λ〉0 positive and negative helical modes have different growth rates, suggesting an inherent weak asymmetry in the transverse jet. © 2007 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-04-25
    Description: The dominant non-dimensional parameter for isodensity transverse jet flow is the mean jet-to-crossflow velocity ratio, R. In Part 1 (Megerian et al., J. Fluid Mech., vol. 593, 2007, p. 93), experimental results are presented for the behaviour of transverse-jet near-field shear-layer instabilities for velocity ratios in the range 1 〈 R ≤ 10. A local linear stability analysis is presented in this paper for the subrange R 〉4, using two different base flows for the transverse jet. The first analysis assumes the flow field to be described by a modified version of the potential flow solution of Coelho & Hunt (J. Fluid Mech., vol. 200, 1989, p. 95), in which the jet is enclosed by a vortex sheet. The second analysis assumes a continuous velocity model based on the same inviscid base flow; this analysis is valid for the larger values of Strouhal number expected to be typical of the most unstable disturbances, and allows prediction of a maximum spatial growth rate for the disturbances. In both approaches, results are obtained by expanding in inverse powers of R so that the free-jet results are obtained as R →∞. The results from both approaches agree in the moderately low-frequency regime. Maximum spatial growth rates and associated Strouhal numbers extracted from the second approach both increase with decreasing velocity ratio R, in agreement with the experimental results from Part 1 in the range 4〈 R ≤10. The nominally axisymmetric mode is found to be the most unstable mode in the transverse-jet shear-layer near-field region, upstream of the end of the potential core. The overall agreement of theoretical and experimental results suggests that convective instability occurs in the transverse-jet shear layer for jet-to-crossflow velocity ratios above 4, and that the instability is strengthened as R is decreased. © 2008 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-05-16
    Description: An expansion in terms of the ratio λ of the characteristic crossflow velocity U ∞ to jet velocity U j , where λ = U ∞ / U j ≪1, is used to obtain a representation of the basic three-dimensional steady flow in the nearfield of a transverse jet at large Reynolds numbers and to study its dominant instability. The inviscid vortex sheet analysis of Coelho and Hunt is extended so as to include asymptotic analysis of the viscous shear layers forming along the boundaries of the jet. These not only allow for continuity of the velocity components but also create vorticity whose advection induces an O ( λ ) axial flow in the direction of the jet. A uniformly valid solution is then constructed for use in a stability analysis that concentrates on the effect of crossflow upon the dominant mode of the free jet. Both the characteristic frequency and growth rate of this mode are found to increase with λ , in qualitative agreement with recent experimental observations.
    Print ISSN: 1364-503X
    Electronic ISSN: 1471-2962
    Topics: Mathematics , Physics , Technology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...