ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-06-01
    Description: We investigate the capability of the strongest earthquakes to modify significantly the seismicity in a wide spatiotemporal window. In particular, we show that the strongest earthquakes of last century were probably able to influence the seismicity at large spatiotemporal distances, extending their reach over thousands of kilometers and decades later. We report statistically significant differences in worldwide seismicity before and after the occurrence of the strongest earthquakes of the last century, whose perturbation is modeled by means of coseismic and postseismic stress variations. This long-term coupling has produced time variations in worldwide seismic activity that appear related to the physical coupling between the focal mechanism of source earthquakes and the tectonic setting of each zone. These results could provide new important insights on seismic hazard assessment because they raise doubts on the validity of two paradigms; that is, the steadiness of the mainshock rate and the isolation of a seismic region from the surrounding areas. Finally, in addition to this backward analysis, we also provide a formal forward test by forecasting the effects on global seismicity of the recent Sumatra-Andaman earthquakes; this is maybe a unique chance to test the long-term hypothesis with an independent dataset that avoids, by definition, any kind of (often unconscious) optimization of the results that is an unavoidable possibility in backward analyses.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The main purpose of this paper is to introduce a Bayesian event tree model for eruption forecasting (BET EF). The model represents a flexible tool to provide probabilities of any specific event at which we are interested in, by merging all the relevant available information, such as theoretical models, a priori beliefs, monitoring measures, and any kind of past data. BET EF is based on a Bayesian procedure and it relies on the fuzzy approach to manage monitoring data. The method deals with short- and long-term forecasting, therefore it can be useful in many practical aspects, as land use planning, and during volcanic emergencies. Finally, we provide the description of a free software package that provides a graphically supported computation of short- to long-term eruption forecasting, and a tutorial application to the recent MESIMEX exercise at Vesuvius.
    Description: Published
    Description: on line first
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: partially_open
    Keywords: Eruption forecasting ; Long- and short-term volcanic hazard ; Bayesian inference ; Event tree ; Fuzzy sets ; MESIMEX ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We investigate southern California seismicity in order to characterize its temporal evolution during the last decades. We analyze the time series composed of the number of events per year and the focal mechanisms of earthquakes since 1933. The results show a statistically significant nonstationarity, with a change that occurred in the 1960s in both time series. The seismicity before the change point is mostly characterized by a strike-slip focal mechanism of San Andreas type; after the 1960s the seismicity appears to show more scattered focal mechanisms and a lower seismicity rate. We provide a possible physical explanation of the significant nonstationarity by modeling the postseismic stress perturbation field induced by the two strongest earthquakes of the last century, the Chile (1960) and Alaska (1964) earthquakes, which both occurred in the 1960s. To first order, the postseismic stress rate seems to be in agreement with the observed changes in seismicity, supporting a causality hypothesis. The model also foretells the future behavior of the trend of southern California seismicity; this forward prediction provides an important opportunity to validate the causal hypothesis of a remote (and long-term) coupling between earthquakes.
    Description: Published
    Description: reserved
    Keywords: lon-term interaction ; post-seismic field ; nonstationarities ; southern california ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 339642 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-03
    Description: Earthquake occurrence stems from a complex interaction of processes that are still partially unknown. This lack of knowledge is revealed by the different statistical distributions that have been so far proposed, and by the different beliefs about the role of some key components as the tectonic setting, fault recurrence, seismic clusters, and fault interaction. Here, we explore these issues through a numerical model based on a realistic interacting fault system. We use an active fault system in Central Italy responsible for moderate to large earthquakes, where geometric and kinematic parameters of each structure can be confidently assessed. Then, we generate synthetic catalogs by modeling different seismogenic processes and allowing co- and post-seismic fault interaction. The comparison of synthetic and real seismic catalogs highlights many interesting features: (i) synthetic seismic catalogs reproduce the short-term clustering and the long-term modulation observed in the historical catalog of the last centuries; (ii) a recurrent model of earthquake occurrence on faults is more effective than a Poisson model to explain such short-term and long-term time features; (iii) a realistic fault pattern is a key component to generate stochasticity in the seismic catalog, preventing a systematic time ”synchronization” of strongly coupled faults; (iv) such a stochasticity may put strong limits to the forecasting capability of models based on fault interaction, even though the latter is a key component of the process. Finally, the model allows explicit predictions on future paleoseismological observations to be made.
    Description: In press
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Earthquake interactions ; probability ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The Andaman Islands - Sumatra earthquake (Mw = 9.3, Dec. 2004) and the subsequent Sumatra earthquake (Mw = 8.7, Mar. 2005) represent one of most energetic sequence of earthquakes ever recorded. Since both events occurred in a strongly active volcanic region, their exceptionally strong stress perturbation gives the opportunity to understand the effects of stress perturbations on volcanic systems. Here, we set the rules for a forward test of the causal relationship between stress perturbation and subsequent volcanic eruptions, by means of the comparison of the spatio-temporal distribution of the eruptions which follow the earthquakes with the co- and the post-seismic stress field due to the earthquakes. In practice, we forecast that the volcanic activity of the next 30 years will be significantly promoted by the stress perturbation; thus, we define the rules for an objective test of such an hypothesis. Given the extremely high values of stress perturbation due to this sequence of earthquakes, the results of our test will definitively provide a reliable evaluation of the possible statistical impact of earthquake-eruption interaction on long-term volcanic hazard assessments.
    Description: Unpublished
    Description: open
    Keywords: Earthquake-volcano interaction, stastical model, stress field, ; stress field ; Statistical model ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Format: 724315 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Earthquake occurrence stems from a complex interaction of processes that are still partially unknown. This lack of knowledge is revealed by the different statistical distributions that have been so far proposed and by the different beliefs about the role of some key components as the tectonic setting, fault recurrence, seismic clusters, and fault interaction. Here, we explore these issues through a numerical model based on a realistic interacting fault system. We use an active fault system in central Italy responsible for moderate to large earthquakes, where geometric and kinematic parameters of each structure can be confidently assessed. Then, we generate synthetic catalogs by modeling different seismogenic processes and allowing coseismic and postseismic fault interaction. The comparison of synthetic and real seismic catalogs highlights many interesting features: (1) synthetic seismic catalogs reproduce the short-term clustering and the long-term modulation observed in the historical catalog of the last centuries; (2) a recurrent model of earthquake occurrence on faults is more effective than a Poisson model to explain such short-term and long-term time features; (3) a realistic fault pattern is a key component to generate stochasticity in the seismic catalog, preventing a systematic time ‘‘synchronization’’ of strongly coupled faults; (4) such a stochasticity may put strong limits to the forecasting capability of models based on fault interaction, even though the latter is a key component of the process. Finally, the model allows explicit predictions on future paleoseismological observations to be made.
    Description: Published
    Description: B01307
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Earthquake interactions ; Probability ; Central Italy ; Fault ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The Campi Flegrei caldera is an active and restless volcano in the densely inhabited Neapolitan area of southern Italy. Because of the very high value (lives, properties, infrastructures, etc.) exposed to potential volcanic hazards, it is one of the areas at highest volcanic risk on Earth. In such a situation we have made an attempt to contribute to assessment of its volcanic hazards by providing a quantitative probabilistic longterm forecast of style and size of the next eruption. We have evaluated the most relevant physical parameters of the 22 explosive eruptions of the Campi Flegrei caldera over the past 5 ka. This time span has been taken as the reference period for volcanic hazards assessment on the basis of the volcanic and deformation history of the caldera. The evaluated parameters include dispersal, volume and density of the pyroclastic deposits, volume of erupted magma, total erupted mass, and eruption magnitude. The obtained results permit a size classification of the explosive eruptions, which are grouped into three sizes: small, medium, and large. On the basis of the reconstructed eruption dynamics, we have considered a type event(s) representative of each size class and hypothesized the style of the next event. An effusive eruption will likely generate a dome or very small lava flows, while an explosive event of any size very probably will produce particles fallout and flowage of pyroclastic density currents. Using a Bayesian inference procedure, we have assigned a conditional probability of occurrence to each of the eruption size classes. A small-size explosive eruption is the most likely event with a probability of about 60%; a large-size explosive eruption is the least likely event with a probability of about 4%; a medium-size explosive eruption has a probability of occurrence of about 25%; an effusive eruption has about 11% probability of occurrence.
    Description: Published
    Description: 265–276
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic hazards assessment ; eruption size ; eruption style ; Campi Flegrei caldera ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The goal of this paper is to yield physical constrains on the nature and evolution of a seismic swarm by means of a quantitative stochastic modeling of earthquakes occurrence. With this purpose, we fit different stationary and nonstationary stochastic ETAS models to the Izu Islands seismic swarm occurred in 2000. We find that a nonstationary model with background activity and p-value varying through time describes the observations better than other simpler ETAS models. The coherent fluctuations of these parameters and of the spatio-temporal earthquake distribution are interpreted in terms of a magma/fluids source process that evolves through outbursts of activity superimposed to low frequency variations. The results obtained suggest that suitable nonstationary ETAS modeling can be very useful to characterize the nature of the swarm source, and it may provide the basis to build a quantitative tool for tracking in almost real-time the evolution of a magma/fluids source.
    Description: Published
    Description: L07310
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic seismic ; Izu Islands swarm ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: The main purpose of this paper is to introduce a Bayesian event tree model for eruption forecasting (BET_EF). The model represents a flexible tool to provide probabilities of any specific event at which we are interested in, by merging all the relevant available information, such as theoretical models, a priori beliefs, monitoring measures, and any kind of past data. BET_EF is based on a Bayesian procedure and it relies on the fuzzy approach to manage monitoring data. The method deals with short- and long-term forecasting, therefore it can be useful in many practical aspects, as land use planning, and during volcanic emergencies. Finally, we provide the description of a free software package that provides a graphically supported computation of short- to long-term eruption forecasting, and a tutorial application to the recent MESIMEX exercise at Vesuvius.
    Description: Published
    Description: 623-632
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: partially_open
    Keywords: eruption forecasting ; event tree ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: We investigate the capability of the strongest earthquakes to modify sig- nificantly the seismicity in a wide spatiotemporal window. In particular, we show that the strongest earthquakes of last century were probably able to influence the seismicity at large spatiotemporal distances, extending their reach over thousands of kilometers and decades later. We report statistically significant differences in worldwide seismi- city before and after the occurrence of the strongest earthquakes of the last century, whose perturbation is modeled by means of coseismic and postseismic stress varia- tions. This long-term coupling has produced time variations in worldwide seismic activity that appear related to the physical coupling between the focal mechanism of source earthquakes and the tectonic setting of each zone. These results could provide new important insights on seismic hazard assessment because they raise doubts on the validity of two paradigms; that is, the steadiness of the mainshock rate and the iso- lation of a seismic region from the surrounding areas. Finally, in addition to this back- ward analysis, we also provide a formal forward test by forecasting the effects on global seismicity of the recent Sumatra–Andaman earthquakes; this is maybe a unique chance to test the long-term hypothesis with an independent dataset that avoids, by definition, any kind of (often unconscious) optimization of the results that is an un- avoidable possibility in backward analyses.
    Description: Published
    Description: 1102–1112
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: open
    Keywords: Long-term earthquake interaction ; Forward Test ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...