ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (14)
  • 1
    Publication Date: 2007-05-11
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-06-01
    Description: Two new approaches are proposed and developed for making time- and space-dependent, quantitative short-term forecasts of lightning threats, and a blend of these approaches is devised that capitalizes on the strengths of each. The new methods are distinctive in that they are based entirely on the ice-phase hydrometeor fields generated by regional cloud-resolving numerical simulations, such as those produced by the Weather Research and Forecasting (WRF) model. These methods are justified by established observational evidence linking aspects of the precipitating ice hydrometeor fields to total flash rates. The methods are straightforward and easy to implement, and offer an effective near-term alternative to the incorporation of complex and costly cloud electrification schemes into numerical models. One method is based on upward fluxes of precipitating ice hydrometeors in the mixed-phase region at the −15°C level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domain-wide statistics of the peak values of simulated flash-rate proxy fields against domain-wide peak total lightning flash-rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. The blended solution proposed in this work is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Simulations of selected diverse North Alabama cases show that the WRF can distinguish the general character of most convective events, and that the methods employed herein show promise as a means of generating quantitatively realistic fields of lightning threat. However, because the models tend to have more difficulty in predicting the instantaneous placement of storms, forecasts of the detailed location of the lightning threat based on single simulations can be in error. Although these model shortcomings presently limit the precision of lightning threat forecasts from individual runs of current generation models, the techniques proposed herein should continue to be applicable as newer and more accurate physically based model versions, physical parameterizations, initialization techniques, and ensembles of forecasts become available.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-03-01
    Description: During its first three years, the Tropical Rainfall Measuring Mission (TRMM) satellite observed nearly six million precipitation features. The population of precipitation features is sorted by lightning flash rate, minimum brightness temperature, maximum radar reflectivity, areal extent, and volumetric rainfall. For each of these characteristics, essentially describing the convective intensity or the size of the features, the population is broken into categories consisting of the top 0.001%, top 0.01%, top 0.1%, top 1%, top 2.4%, and remaining 97.6%. The set of “weakest/smallest” features composes 97.6% of the population because that fraction does not have detected lightning, with a minimum detectable flash rate of 0.7 flashes (fl) min−1. The greatest observed flash rate is 1351 fl min−1; the lowest brightness temperatures are 42 K (85 GHz) and 69 K (37 GHz). The largest precipitation feature covers 335 000 km2, and the greatest rainfall from an individual precipitation feature exceeds 2 × 1012 kg h−1 of water. There is considerable overlap between the greatest storms according to different measures of convective intensity. The largest storms are mostly independent of the most intense storms. The set of storms producing the most rainfall is a convolution of the largest and the most intense storms. This analysis is a composite of the global Tropics and subtropics. Significant variability is known to exist between locations, seasons, and meteorological regimes. Such variability will be examined in Part II. In Part I, only a crude land–ocean separation is made. The known differences in bulk lightning flash rates over land and ocean result from at least two differences in the precipitation feature population: the frequency of occurrence of intense storms and the magnitude of those intense storms that do occur. Even when restricted to storms with the same brightness temperature, same size, or same radar reflectivity aloft, the storms over water are considerably less likely to produce lightning than are comparable storms over land.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-12
    Description: During its first three years, the Tropical Rainfall Measuring Mission (TRMM) satellite observed nearly six million precipitation features. The population of precipitation features is sorted by lightning flash rate, minimum brightness temperature, maximum radar reflectivity. areal extent, and volumetric rainfall. For each of these characteristics, essentially describing the convective intensity or the size of the features, the population is broken into categories consisting of the top 0.001%, top 0.01%, top 0.1%, top 1%, top 2.4%. and remaining 97.6%. The set of weakest/smallest features composes 97.6% of the population because that fraction does not have detected lightning, with a minimum detectable flash rate of 0.7 flashes (fl) per minute. The greatest observed flash rate is 1351 fl per minute; the lowest brightness temperatures are 42 K (85 GHz) and 69 K (37 GHz). The largest precipitation feature covers 335 000 square kilometers and the greatest rainfall from an individual precipitation feature exceeds 2 x 10 kg per hour of water. There is considerable overlap between the greatest storms according to different measures of convective intensity. The largest storms are mostly independent of the most intense storms. The set of storms producing the most rainfall is a convolution of the largest and the most intense storms. This analysis is a composite of the global Tropics and subtropics. Significant variability is known to exist between locations. seasons, and meteorological regimes. Such variability will be examined in Part II. In Part I, only a crude land-ocean separation is made. The known differences in bulk lightning flash rates over land and ocean result from at least two differences in the precipitation feature population: the frequency of occurrence of intense storms and the magnitude of those intense storms that do occur. Even when restricted to storms with the same brightness temperature, same size, or same radar reflectivity aloft, the storms over water are considerably less likely to produce lightning than are comparable storms over land.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-12
    Description: The recently reprocessed (1997-2006) OTD/LIS database is used to investigate the global lightning climatology in response to the ENSO cycle. A linear correlation map between lightning anomalies and ENSO (NINO3.4) identifies areas that generally follow patterns similar to precipitation anomalies. We also observed areas where significant lightning/ENSO correlations are found and are not accompanied of significant precipitation/ENSO correlations. An extreme case of the strong decoupling between lightning and precipitation is observed over the Indonesian peninsula (Sumatra) where positive lightning/NINO3.4 correlations are collocated with negative precipitation/NINO3.4 correlations. Evidence of linear relationships between the spatial extent of thunderstorm distribution and the respective NINO3.4 magnitude are presented for different regions on the Earth. Strong coupling is found over areas remote to the main ENSO axis of influence and both during warm and cold ENSO phases. Most of the resulted relationships agree with the tendencies of precipitation related to ENSO empirical maps or documented teleconnection patterns. Over the Australian continent, opposite behavior in terms of thunderstorm activity is noted for warm ENSO phases with NINO3.4 magnitudes with NINO3.4〉+l.08 and 0〈NqNO3.4〈I.08. Finally, we investigate the spatial distribution of areas that consistently portrayed enhanced lightning activity during the main warm/cold (El Nino/La Nina) ENSO episodes of the past decade. The observed patterns show no spatial overlapping and identify areas that in their majority are in agreement with empirical precipitation/ENSO maps. The areas that appear during the warm ENSO phase are found over regions that have been identified as anomalous Hadley circulation ENSO-related patterns. The areas that appear during the cold ENSO phase are found predominantly around the west hemisphere equatorial belt and are in their majority identified by anomalous Walker circulation.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: We ask how lightning measurements might best be used to improve short-term (0-24 hr) weather forecasting. We examine recently developed strategies for the integration of lightning data into Short-term forecasts (nowcasts) of convective and severe weather hazards and the assimilation of lightning data into numerical weather prediction models. In each strategy we define specific metrics of forecast improvement and a progress assessment. We also address the conventional observing system deficiencies and potential gap-filling information that can be addressed through the use of the lightning measurement.
    Keywords: Meteorology and Climatology
    Type: Paper-84102 , 85th American Meteological Society Meeting; Jan 09, 2005 - Jan 13, 2005; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: The global maps of maximum mean annual flash density derived from a decade of observations from the Lightning Imaging Sensor on the NASA Tropical Rainfall Measuring Mission (TRMM) satellite show that a 0.5 degree x 0.5 degree pixel west of Bukavu, Democratic Republic of Congo (latitude 2S, longitude 28E) has the most frequent lightning activity anywhere on earth with an average value in excess of 157 fl/sq km/yr. This pixel has a flash density that is much greater than even its surrounding neighbors. By contrast the maximum mean annual flash rate for North America located in central Florida is only 33 fl/sq km/yr. Previous studies have shown that monthly-seasonal-annual lightning maxima on earth occur in regions dominated by coastal (land-sea breeze interactions) or topographic influences (elevated heat sources, enhanced convergence). Using TRMM, Landsat Enhanced Thematic Mapper, and Shuttle Imaging Radar imagery we further examine the unique features of this region situated in the deep tropics and dominated by a complex topography having numerous mountain ridges and valleys to better understand why this pixel, unlike any other, has the most active lightning on the planet.
    Keywords: Meteorology and Climatology
    Type: 3rd International TRMM Science Conference/NASA; Feb 04, 2008 - Feb 08, 2008; Las Vegas, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch readiness in December 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fUlly operational. The mission objectives for the GLM are to 1) provide continuous, full-disk lightning measurements for storm warning and nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight models will be underway in the latter part of 2007. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama and the Washington DC Metropolitan area) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data are being provided in an experimental mode to selected National Weather Service (NWS) forecast offices in Southern and Eastern Region. This effort is designed to help improve our understanding of the application of these data in operational settings.
    Keywords: Meteorology and Climatology
    Type: AMS 88th Annual Meeting; Jan 20, 2008 - Jan 24, 2008; New Orleans, LA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fUlly operational. The mission objectives for the GLM are to 1) provide continuous, full-disk lightning measurements for storm warning and nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight models is expected to be underway in the latter part of 2007. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 ground processing algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama and the Washington DC Metropolitan area)
    Keywords: Meteorology and Climatology
    Type: AMS 88th Annual Meeting; Jan 20, 2008 - Jan 24, 2008; New Orleans, LA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: An experimental portable lightning mapping array (LMA) operating in the upper VHF TV band (Channels 7-13; 174-216 MHz) was deployed in the Washington DC Metropolitan area during the summer 2006 to locate and monitor the overall lightning activity. The LMA network provides total lightning data to support lightning research as well as proxy data to benefit the development of applications for planned observing systems such as the GOES-R Geostationary Lightning Mapper. The portable LMA hardware is a compactly-housed, easily deployed version of the LMA stations installed North Alabama, Oklahoma, and New Mexico, which operate in the lower VHF TV band (Channels 2-6,54-88 MHz). Real-time LMA data products are provided to the National Weather Service Weather Forecast Office (WFO) in Sterling, VA to aid in their forecast and warning operations. Forecasters at WFO Sterling have already found the lightning data from the Washington DC demonstration network to be very useful in assessing the development of storm systems. On July 4,2006, data from the LMA aided forecasters as they monitored an area of convection that later developed into a line of severe storms that moved southward through the Washington DC metropolitan area across the Washington Mall. Additional applications of lightning mapping data in the Baltimore-Washington DC urban environment will be discussed.
    Keywords: Meteorology and Climatology
    Type: 2006 Fall AGU Meeting, Physics and Detection of Thunderstorm Electrification and Lightning; Dec 11, 2006 - Dec 15, 2006; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...