ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Physica D: Nonlinear Phenomena 237 (2008): 584-599, doi:10.1016/j.physd.2007.09.025.
    Description: A simple heuristic model of coupled decadal ocean–atmosphere modes in middle latitudes is developed. Previous studies have treated atmospheric intrinsic variability as a linear stochastic process modified by a deterministic coupling to the ocean. The present paper takes an alternative view: based on observational, as well as process modeling results, it represents this variability in terms of irregular transitions between two anomalously persistent, high-latitude and low-latitude jet-stream states. Atmospheric behavior is thus governed by an equation analogous to that describing the trajectory of a particle in a double-well potential, subject to stochastic forcing. Oceanic adjustment to a positional shift in the atmospheric jet involves persistent circulation anomalies maintained by the action of baroclinic eddies; this process is parameterized in the model as a delayed oceanic response. The associated sea-surface temperature anomalies provide heat fluxes that affect atmospheric circulation by modifying the shape of the double-well potential. If the latter coupling is strong enough, the model’s spectrum exhibits a peak at a periodicity related to the ocean’s eddy-driven adjustment time. A nearly analytical approximation of the coupled model is used to study the sensitivity of this behavior to key model parameters.
    Description: This research was supported by National Science Foundation grant OCE-02-221066 (all coauthors) and the Department of Energy grant DE-FG-03-01ER63260 (MG and SK).
    Keywords: Coupled climate variability ; Stochastic models ; Double-well potential
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution October 1982
    Description: Four different problems concerning Gulf Stream Rings are considered. The first deals with the particle trajectories of, and advection-diffusion by, a dynamic model of a Ring. It is found that the streaklines computed from the assumptions that the Ring is a steadily propagating and permanent form structure accurately describe its Lagrangian trajectories. The dispersion field of the Ring produces east-west asymmetries in the streaklines, not contained in earlier kinematic studies, which are consistent with observed surface patterns. In the second problem, we compute the core mixed layer evolution of both warm and cold Rings, and compare them to the background SST, in an effort to explain observed SST cycles of Rings. We demonstrate that warm Rings retain their anomalous surface identity, while cold Rings do not, because of differences in both the local atmospheric states of the Sargasso and the Slope and the typical mixed layer structures appropriate to each. The third and fourth problems concern the forced evolution of Gulf Stream Rings as effected by atmospheric interactions. First, we compute the forced spin down of a Gulf Stream Ring. The variations in surface stress across the Ring necessary to spin it down are caused by the variations in relative air-sea velocity, of which the stress is a quadratric function. From numerical simulations, we find the forced decay rates are comparable to those inferred from Ring observations. In the final problem, it is suggested that a substantial fraction of meridional Ring migration is a forced response, caused by Ring SST and the temperature dependence of stress. The warm central waters of anticyclonic Rings are regions of enhanced stress, producing upwelling to the north, and downwelling to the south, which shifts the Ring to the south. A similar, southward shift is computed for cyclonic Rings with cold centers, which tends to reconcile their numerically computed propagation with observations.
    Description: The present research has been conducted under NOAA contract # NA80AA-D-0057 and NSF contract II OCE-8240455
    Keywords: Ocean-atmosphere interaction ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Dynamics of Atmospheres and Oceans 43 (2007): 123-150, doi:10.1016/j.dynatmoce.2006.08.001.
    Description: This study examines mid-latitude climate variability in a model that couples turbulent oceanic and atmospheric flows through an active oceanic mixed layer. Intrinsic ocean dynamics of the inertial recirculation regions combines with nonlinear atmospheric sensitivity to sea-surface temperature (SST) anomalies to play a dominant role in the variability of the coupled system. Intrinsic low-frequency variability arises in the model atmosphere; when run in a stand-alone mode, it is characterized by irregular transitions between preferred high-latitude and less frequent low-latitude zonal-flow states. When the atmosphere is coupled to the ocean, the low-latitude state occurrences exhibit a statistically significant signal in a broad 5–15-year band. A similar signal is found in the time series of the model ocean’s energy in this coupled simulation. Accompanying uncoupled ocean-only and atmosphere-only integrations are characterized by a decrease in the decadal-band variability, relative to the coupled integration; their spectra are indistinguishable from a red spectrum. The time scale of the coupled interdecadal oscillation is set by the nonlinear adjustment of the ocean’s inertial recirculations to the high-latitude and low-latitude atmospheric forcing regimes. This adjustment involves, in turn, SST changes resulting in long-term ocean–atmosphere heat-flux anomalies that induce the atmospheric regime transitions.
    Description: This research was supported by NSF grant OCE-02-221066 (all co-authors) and DOE grant DE-FG-03-01ER63260 (MG and SK).
    Keywords: Inertial recirculations ; Mid-latitude jet stream ; Bimodality
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © Sears Foundation for Marine Research, 2006. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 64 (2006): 541-561, doi:10.1357/002224006778715720.
    Description: Ocean mixing is thought to control the climatically important oceanic overturning circulation. Here we argue the marine biosphere, by a mechanism like the bioturbation occurring in marine sediments, mixes the oceans as effectively as the winds and tides. This statement is derived ultimately from an estimated 62.7 TeraWatts of chemical power provided to the marine environment in net primary production. Various approaches argue something like 1% (.63 TeraWatts) of this power is invested in aphotic ocean mechanical energy, a rate comparable to wind and tidal inputs.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 375956 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © 2008 The Authors. This work is licensed under a Creative Commons Attribution License. The definitive version was published in Nonlinear Processes in Geophysics 15 (2008): 13-24, doi:10.5194/npg-15-13-2008
    Description: We show that the observed zonally averaged jet in the Northern Hemisphere atmosphere exhibits two spatial patterns with broadband variability in the decadal and inter-decadal range; these patterns are consistent with an important role of local, mid-latitude ocean–atmosphere coupling. A key aspect of this behaviour is the fundamentally nonlinear bi-stability of the atmospheric jet's latitudinal position, which enables relatively small sea-surface temperature anomalies associated with ocean processes to affect the large-scale atmospheric winds. The wind anomalies induce, in turn, complex three-dimensional anomalies in the ocean's main thermocline; in particular, they may be responsible for recently reported cooling of the upper ocean. Both observed modes of variability, decadal and inter-decadal, have been found in our intermediate climate models. One mode resembles North Atlantic tri-polar sea-surface temperature (SST) patterns described elsewhere. The other mode, with mono-polar SST pattern, is novel; its key aspects include interaction of oceanic turbulence with the large-scale oceanic flow. To the extent these anomalies exist, the interpretation of observed climate variability in terms of natural and human-induced changes will be affected. Coupled mid-latitude ocean-atmosphere modes do, however, suggest some degree of predictability is possible.
    Description: This research was supported by NSF grant OCE-02-221066, DOE grants DE-FG-03-01ER63260 and DE-FG02-02ER63413, as well as NASA grant NNG-06-AG66G-1 (MG & SK). PB has also been supported by the Newton Trust research grant, and SK - by the University of Wisconsin-Milwaukee Research Growth Initiative program 2006-2007.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-08-13
    Print ISSN: 0177-7971
    Electronic ISSN: 1436-5065
    Topics: Geography , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-04-01
    Description: A midlatitude coupled ocean–atmosphere model is used to investigate interactions between the atmosphere and the wind-driven ocean circulation. This model uses idealized geometry, yet rich and complicated dynamic flow regimes arise in the ocean due to the explicit simulation of geostrophic turbulence. An interdecadal mode of intrinsic ocean variability is found, and this mode projects onto existing atmospheric modes of variability, thereby controlling the time scale of the atmospheric modes. It is also shown that ocean circulation controls the time scale of the SST response to wind forcing, and that coupled feedback mechanisms thus modify variability of the atmospheric circulation. It is concluded that ocean–atmosphere coupling in the midlatitudes is unlikely to produce new modes of variability but may control the temporal behavior of modes that exist in uncoupled systems.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-08-01
    Description: Small-scale variation in wind stress due to ocean–atmosphere interaction within the atmospheric boundary layer alters the temporal and spatial scale of Ekman pumping driving the double-gyre circulation of the ocean. A high-resolution quasigeostrophic (QG) ocean model, coupled to a dynamic atmospheric mixed layer, is used to demonstrate that, despite the small spatial scale of the Ekman-pumping anomalies, this phenomenon significantly modifies the large-scale ocean circulation. The primary effect is to decrease the strength of the nonlinear component of the gyre circulation by approximately 30%–40%. This result is due to the highest transient Ekman-pumping anomalies destabilizing the flow in a dynamically sensitive region close to the western boundary current separation. The instability of the jet produces a flux of potential vorticity between the two gyres that acts to weaken both gyres.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-12-01
    Description: Improved seasonal prediction of sea surface temperature (SST) anomalies over the global oceans is the theme of this paper. Using 13 state-of-the-art coupled global atmosphere–ocean models and 13 yr of seasonal forecasts, the performance of individual models, the ensemble mean, the bias-removed ensemble mean, and the Florida State University (FSU) superensemble are compared. A total of 23 400 seasonal forecasts based on 1-month lead times were available for this study. Evaluation metrics include both deterministic and probabilistic skill measures, such as verification of anomalies based on model and observed climatology, time series of specific climate indices, standard deterministic ensemble mean scores including anomaly correlations, root-mean-square (RMS) errors, and probabilistic skill measures such as equitable threat scores for seasonal SST forecasts. This study also illustrates the Niño-3.4 SST forecast skill for the equatorial Pacific Ocean and for the dipole index for the Indian Ocean. The relative skills of total SST fields and of the SST anomalies from the 13 coupled atmosphere–ocean models are presented. Comparisons of superensemble-based seasonal forecasts with recent studies on SST anomaly forecasts are also shown. Overall it is found that the multimodel superensemble forecasts are characterized by considerable RMS error reductions and increased accuracy in the spatial distribution of SST. Superensemble SST skill also persists for El Niño and La Niña forecasts since the large comparative skill of the superensemble is retained across such years. Real-time forecasts of seasonal sea surface temperature anomalies appear to be possible.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2005-04-01
    Description: Eddy-resolving quasigeostrophic simulations of wind-driven circulation in a large ocean basin are presented. The results show that strong modes of low-frequency variability arise in many parameter regimes and that the strength of these modes depends upon the presence of inertial recirculations in the flow field. The inertial recirculations arise through advection of anomalous potential vorticity by the western boundary current and are barotropized by the effect of baroclinic eddies in the flow. The mechanism of low-frequency oscillations is explored with reference to previous studies, and it is found that the observed mode can be linked to the gyre mode but is strongly modified by the effect of eddies.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...