ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (6)
  • 2005-2009  (6)
Collection
Years
Year
  • 1
    Publication Date: 2018-06-12
    Description: We report on follow-up observations of the gamma-ray burst GRB 060927 using the robotic ROTSE-IIIa telescope and a suite of larger aperture groundbased telescopes. An optical afterglow was detected 20 s after the burst, the earliest rest-frame detection of optical emission from any GRB. Spectroscopy performed with the VLT about 13 hours after the trigger shows a continuum break at lambda approx. equals 8070 A, produced by neutral hydrogen absorption at zeta = 5.6. We also detect an absorption line at 8158 A which we interpret as Si II lambda 1260 at zeta = 5.467. Hence, GRB 060927 is the second most distant GRB with a spectroscopically measured redshift. The shape of the red wing of the spectral break can be fitted by a damped Ly(alpha) profile with a column density with log(N(sub HI)/sq cm) = 22.50 +/- 0.15. We discuss the implications of this work for the use of GRBs as probes of the end of the dark ages and draw three main conclusions: i) GRB afterglows originating from zeta greater than or approx. equal to 6 should be relatively easy to detect from the ground, but rapid near-infrared monitoring is necessary to ensure that they are found; ii) The presence of large H I column densities in some GRBs host galaxies at zeta 〉 5 makes the use of GRBs to probe the reionization epoch via spectroscopy of the red damping wing challenging; iii) GRBs appear crucial to locate typical star-forming galaxies at zeta 〉 5 and therefore the type of galaxies responsible for the reionization of the universe.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-12
    Description: We report early follow-up observations of the error box of the short burst 050813 using the telescopes at Calar Alto and at Observatorio Sierra Nevada (OSN), followed by deep VLT/FORS2 I-band observations obtained under very good seeing conditions 5.7 and 11.7 days after the event. No evidence for a GRB afterglow was found in our Calar Alto and OSN data, no rising supernova component was detected in our FORS2 images. A potential host galaxy can be identified in our FORS2 images, even though we cannot state with certainty its association with GRB 050813. IN any case, the optical afterglow of GRB 050813 was very faint, well in agreement with what is known so far about the optical properties of afterglows of short bursts. We conclude that all optical data are not in conflict with the interpretation that GRB 050813 was a short burst.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: It has long been known that there are two classes of gamma-ray bursts (GRBs), principally distinguished by their durations. The breakthrough in our understanding of long-duration GRBs (greater than 2 seconds in duration), that ultimately linked them with energetic Type Ic supernovae, came about from the discovery of their long-lived X-ray and optical "afterglow", when precise and rapid localizations of the sources could finally be obtained. Recently, X-ray localizations have become available for short (less than 2 seconds in duration) GRBs, a hitherto elusive GRB population, that has evaded optical detection for more than thirty years. Here we report the discovery of transient optical emission (R approximately 23 mag) associated with a short GRB. This first short GRB afterglow is localized with sub-arcsecond accuracy onto the outskirts of a blue dwarf galaxy. Unless the optical and X-ray afterglow arise from different mechanisms our observations 33 h after the GRB suggest that, analogously to long GRBs, we observe synchrotron emission from ultrarelativistic ejecta (ZZZ CAN WE LIMIT GAMMA?). In contrast, we did not detect a bright supernova, as found in most nearby long GRB afterglows, which suggests a different origidstrongly constrain the nature of the short GRB progenitors.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: We have obtained near-infrared and high-resolution optical spectroscopy of the bright afterglow of the very intense gamma-ray burst recorded on 2002, October 4 (GRB 021004). Besides of line emission in the near-IR allowing an independent measurement of the systemic redshift (z = 2.3304 plus or minus 0.0005), we find several absorption line groups spanning a range of about 3,000 kilometers per second in velocity relative to the redshift of the host galaxy. The absorption profiles are very complex with both velocity-broadened components extending over several 100 kilometers per second and narrow lines with velocity widths of only approximately 20 kilometers per second. By analogy with QSO absorption line studies, the relative velocities, widths, and degrees of ionization of the lines ("line-locking", "ionization-velocity correlation") show that the progenitor had both an extremely strong radiation field and several distinct mass loss phases (winds). These results are consistent with GRB progenitors being massive stars, such as Luminous Blue Variables (LBVs) or Wolf-Rayet stars, providing a detailed picture of the spatial and velocity structure of the GRB progenitor star at the time of explosion. The host galaxy is a prolific star-forming galaxy with a SFR of approximately 10 solar mass yr(sup -l).
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: X-ray flashes (XRFs) are, like gamma-ray bursts (GRBs), thought to signal the collapse of massive stars in distant galaxies. Many models posit that the isotropic equivalent energies of XRFs are lower than those for GRBs, such that they are visible fiom a reduced range of distances when compared with GRBs. Here we present the results of two-epoch Hubble Space Telescope imaging of two XRFs. These images, taken approximately 45 and 200 days postburst, reveal no evidence of an associated supernova in either case. Supernovae such as SN 1998bw would have been visible out to z approximately 1.5 in each case, while fainter supernovae such as SN 2002ap would have been visible to z approximately 1. If the XRFs lie at such large distances, their energies would not fit the observed correlation between the GRB peak energy and isotropic energy release (E(sub p) proportional to E(sub iso)(sup 1/2), in which soft bursts are less energetic. We conclude that, should these XRFs reside at low redshifts (z less than 0.6), either their line of sight is heavily extinguished, they are associated with extremely faint supernovae, or, unlike GRBs, these XRFs do not have temporally coincident supernovae.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; 622; 977-985
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: We have obtained deep optical images with the Very Large Telescope at ESO of the first well-localized short-duration gamma-ray burst, GRB 050509b. We observed in the V and R bands at epochs starting at approx. 2 days after the GRB trigger and lasting up to three weeks. We detect no variable objects inside the small Swift/XRT X-ray error circle down to 5(sigma) limiting magnitudes of V = 26.5 and R = 25.2. The X-ray error circle includes a giant elliptical galaxy at z = 0.225, which has been proposed as the likely host of this GRB. Our limits indicate that if the GRB originated at z = 0.225, any supernova-like event accompanying the GRB would have to be over 100 times fainter than normal Type Ia SNe or Type IC hypernovae, 5 times fainter than the faintest known Ia or IC SNe, and fainter than the faintest known Type II SNe. Moreover, we use the optical limits to constrain the energetics of the GRB outflow, and conclude that there was very little radioactive material produced during the GRB explosion. These limits strongly constrain progenitor models for this short GRB. Subject headings: gamma rays: bursts - supernovae
    Keywords: Space Radiation
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...