ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1997-09-01
    Description: The distribution, mineralogy, petrology and bulk and stable isotope chemistry of altered volcanic ash beds in the marine sediments of Mid-Triassic age (Etalian) at Kaka Point, New Zealand, are described and related to lithofacies and the geological processes controlling their development.Three varieties of altered ash occur in the Kaka Point sediments — porcellanite, claystone (bentonite) and albite-rich. Porcellanites are quartz-rich and may contain analcime and heulandite: they are restricted mainly to the on-shore facies. Claystones are rich in smectitic clay minerals and occur in both the on-shore and off-shore facies. They often contain diagenetic nodules of analcime, quartz, apatite and carbonates. The authigenic carbonates of the on-shore facies are variable in composition (sideritic, rhodochrositic, calcitic), whereas in the off-shore facies they consist only of calcite. The albite-rich lithology is very rare and is known only from the off-shore facies.The development of the porcellanite and albite-rich lithologies was restricted to slowly deposited, relatively coarse-grained ash sediments in which extensive interchange took place between the sediment's pore-waters and ambient seawater, resulting in enhanced microbial activity and high pH throughout the pore-waters of the suboxic zone beneath the water-sediment interface. The high pH increased the rate of volcanic ash hydrolysis and provided the conditions necessary for the precipitation of zeolite, feldspar and quartz. The development of smectitic claystones was associated with more rapid deposition and limited interchange between the pore-waters of the parent ash and ambient seawater. The pore-water alkalinity was generally lower and enhanced microbial activity and high pHs were restricted to patches of sediment at which quartz, analcime, apatite and carbonates formed diagenetic nodules. Modelling of the stable isotopes of the smectitic clays (δ18O, δD) and diagenetic carbonates (δ18O, δ13C) suggest that: (1) ash argillization in the on-shore facies took place in brackish water (∼25% meteoric water) at an average temperature of ∼50°C and in the off-shore facies in marine pore-waters (∼10% meteoric waters) at ∼40°C and (2) diagenetic carbonate precipitation in the near-shore facies took place at ∼30°C and in the off-shore facies at 60–80°C.The pattern of ash alteration in the marine Triassic sediments at Kaka Point is considered to represent an early stage in the development of the zeolite pattern associated with the classic area of zeolite facies metamorphism in the Taringatura and Hokonui Hills.
    Print ISSN: 0009-8558
    Electronic ISSN: 1471-8030
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-03-01
    Description: The origin of the regional and stratigraphical variation in the Triassic authigenic clay assemblages of England is discussed in relation to new estimates of the palaeotemperatures experienced by their host sediments and a preliminary study by transmission electron microscopy of their microtextural features. Spore colour index measurements, based on the spore type Deltoidospora s.l. occurring in the sediments (Penarth Group) at the very top of the Triassic sequence, give estimated palaeotemperatures ranging from 60–74°C (south Devon) to 89–97°C (northeast Yorkshire). Calculated palaeotemperatures, based on a gradient of 25°C/km, for the main zone of authigenic clay minerals range from 63–77°C to 89–97°C for the top to 71–85°C to 94–104°C for the base. Irregular mixed-layer smectite-chlorite, corrensite and Mg-rich chlorite are associated with calculated palaeotemperatures of 66–86°C, 66–104°C and 75–104°C respectively. The suggestion that elsewhere in the UK corrensite and Mg-rich chlorite were formed at temperatures in excess of 100°C finds no support. Geothermal gradients would have to have been of the order of at least 100–300°C/km to obtain these temperatures within the Triassic sediments; such values are associated typically with high-level magmatic intrusions or geothermal systems of which there is no geological evidence. The balance of evidence suggests that the Triassic authigenic clay assemblages formed by neoformation during the early stages of sediment diagenesis under the influence of variation in the alkalinity of the depositional environments.
    Print ISSN: 0009-8558
    Electronic ISSN: 1471-8030
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...