ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (80)
  • American Physical Society (APS)
  • American Geophysical Union (AGU)
  • 2005-2009  (28)
  • 1990-1994  (52)
  • 1
    Publication Date: 2008-11-25
    Description: A swimming micro-organism is modelled as a squirming sphere with prescribed tangential surface velocity and referred to as a squirmer. The centre of mass of the sphere may be displaced from the geometric centre, and the effects of inertia and Brownian motion are neglected. The well-known Stokesian dynamics method is modified in order to simulate squirmer motions in a concentrated suspension. The movement of 216 identical squirmers in a concentrated suspension without any imposed flow is simulated in a cubic domain with periodic boundary conditions, and the coherent structures within the suspension are investigated. The results show that (a) a weak aggregation of cells appears as a result of the hydrodynamic interaction between cells; (b) the cells generate collective motions by the hydrodynamic interaction between themselves; and (c) the range and duration of the collective motions depend on the volume fraction and the squirmers' stresslet strengths. These tendencies show good qualitative agreement with previous experiments. © 2008 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1993-02-01
    Description: Two-dimensional, unsteady flow of a viscous, incompressible fluid in a stepped channel has been studied by the numerical solution of the Navier-Stokes equation using an accurate finite-difference method. With a sinusoidal mass flow rate, the problem has three governing parameters: the Reynolds number, the Strouhal number, and the step height. The effects on the flow of varying all three parameters has been investigated systematically. In appropriate parameter regimes, a strong vortex wave' is generated during the forward phase when the flow is over the step into the expansion. Secondary effects on the wave can result in a complex flow pattern with each major structure of the flow consisting of an eddy with more than one core. No such wave is found during the reverse phase of the flow. The generation and development of the wave is examined in some detail, and our results are compared and contrasted with those of previous studies, both experimental and theoretical, of flow in non-uniform vessels. © 1993, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1993-10-01
    Description: An experimental and numerical investigation of the density distribution produced in a container by a negatively buoyant jet has been undertaken to evaluate the effect of the forced vertical motion of the environment. Vertical motion results from inflows and exhausts above and below the jet. Three distinct cases were identified. In the first, a velocity in the environment opposed the jet and produced a steady flow. This configuration was used to measure the entrainment flux along the length of the fountain. This configuration is similar to a jet impinging on an interface for which the entrainment depends on the local Froude number. The experiments covered a wider range of local Froude numbers than previously published and have produced results which are different from those in the literature. In the second case, the environment was at rest except for the motion induced by the fountain. An interface formed at the base of the fountain and moved quickly to the top. Once there, it advanced slowly due to entrainment through the end of the fountain and the length of the fountain increased. The final case is a co-flowing environment. No interface formed if the environment velocity was greater than the advance velocity of the end of the fountain. However, one formed for a smaller environment velocity and the end of the fountain was observed to undergo a quasi-periodic jump phenomenon. The top of the fountain would advance with the environment particles for a short time and then snap back to the elevation of a fountain in an infinite environment. A new interface formed and the cycle repeated. © 1993, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1994-11-10
    Description: An exact result is calculated numerically for the dilute limiting, zero shear viscosity of bimodal suspensions of hard spheres. The required hydrodynamic functions are calculated from recent results for the resistivities of unequal spheres. Both the hydrodynamic and Brownian contributions to the Huggins coefficient exhibit a minimum that is symmetric in mixing volume fraction. The resultant minimum deepens with increasing size ratio. The results are discussed in the light of published measurements of the viscosity for bimodal suspensions and previous phenomenological theories. The reduction of viscosity upon mixing is seen to be a result of near-field hydrodynamic shielding of asymmetric particle pairs. It is also shown that the use of far-field hydrodynamic interactions yields qualitatively incorrect results for the viscosity of binary mixtures. A parametrization of the bimodal results allows an estimation of the effects of suspension polydispersity on the Huggins coefficient. For polydispersities of ten percent or less, the Huggins coefficient is essentially unchanged from the value calculated for an equivalent, monodisperse suspension at equal volume fraction. A parametrization of these results is provided for relating the reduction in Huggins coefficient to the polydispersity index. © 1994, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-11-18
    Description: An experimental study has been performed on the dynamics of a large turbulent buoyanthelium plume. Two-dimensional velocity fields were measured using particle image velocimetry (PIV) while helium mass fraction was determined by planar laser-induced fluorescence (PLIF). PIV and PLIF were performed simultaneously in order to obtain velocity and mass fraction data over a plane that encompassed the plume core, the near-field mixing zones and the surrounding air. The Rayleigh-Taylor instability at the base of the plume leads to the vortex that grows to dominate the flow. This process repeats in a cyclical manner. The temporally and spatially resolved data show a strong negative correlation between density and vertical velocity, as well as a strong 90° phase lag between peaks in the vertical and horizontal velocities throughout the flow field owing to large coherent structures associated with puffing of the turbulent plume. The joint velocity an mass fraction data are used to calculate Favre-averaged statistics in addition to Reynolds-(time) averaged statistics. Unexpectedly, the difference between both the Favre-averaged and Reynolds-averaged velocities and second-order turbulent statistics is less than the uncertainty in the data throughout the flow field. A simple analysis was performed to determine the expected differences between Favre and Reynolds statistics for flows with periodic fluctuations in which the density and velocity fields are perfectly correlated, but have the phase relations as suggested by the data. The analytical results agreewith the data, showing that the Favre and Reynolds statistics will be the same to lead order. The combination of observation and simple analysis suggests that for buoyancy-dominated flows in which it can be expected that density and velocity are strongly correlated,phase relations will result in only second-order differences between Favre- and Reynolds-averaged data in spite of strong fluctuations in both density and velocity. © 2005 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-11-15
    Description: We have studied steady flow in a two-dimensional channel in which a section of one wall has been replaced by an elastic membrane under dimensionless longitudinal tension T but possessing no bending stiffness. The dimensionless upstream transmural pressure takes a value Pext, the membrane section is assumed to be long compared with the channel width and its deformation is assumed to remain within the viscous boundary layers. Standard high-Reynolds-number asymptotic methods are applied to arrive at a coupled boundary-layer-membrane problem. A non-zero cross-stream pressure gradient, leading to flow perturbations upstream of the membrane, is included in the analysis. Linearization of the boundary-layer problem yields firstly an analytic solution at non-zero Pext and asymptotically high T. This takes the form of an expansion in T-1 for which the membrane shape and the flow decouple at each order. Extension of this solution branch to smaller values of the tension suggests a singularity at finite tension, where the deformation of the membrane becomes very large. Secondly, when the upstream transmural pressure is zero the trivial solution is valid for all values of the tension. However, we also obtain eigensolutions where the membrane tension plays the role of eigenvalue. There are thus non-trivial solutions of the problem at these particular values of the tension. The nonlinear coupled boundary-layer-membrane problem is then solved numerically. A finite-difference, Keller-box, marching scheme is used, together with a shooting algorithm to satisfy the boundary condition at the downstream end of the membrane. This reveals a variety of different solutions, showing the relation between the two cases captured by the linearized analysis and demonstrating the existence of parameter ranges for which no solutions exist under the specified constraints. Such parameter ranges appear not to exist if the downstream, rather than the upstream, transmural pressure is held constant. The relation to our results of solutions obtained by solving the two-dimensional Navier-Stokes equations directly is discussed. Reasonable agreement between parameters is obtained, once allowance is made for the finite Reynolds number and membrane length in those computations. © 2006 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-09-28
    Description: A generalization of criticality - called secondary criticality - is introduced and applied to finite-amplitude Stokes waves. The theory shows that secondary criticality signals a bifurcation to a class of steady dark solitary waves which are biasymptotic to a Stokes wave with a phase jump in between, and synchronized with the Stokes wave. We find the that the bifurcation to these new solitary waves - from Stokes gravity waves in shallow water - is pervasive, even at low amplitude. The theory proceeds by generalizing concepts from hydraulics: three additional functionals are introduced which represent non-uniformity and extend the familiar mass flux, total head and flow force, the most important of which is the wave action flux. The theory works because the hydraulic quantities can be related to the governing equations in a precise way using the multi-symplectic Hamiltonian formulation of water waves. In this setting, uniform flows and Stokes waves coupled to a uniform flow are relative equilibria which have an attendant geometric theory using symmetry and conservation laws. A flow is then 'critical' if the relative equilibrium representation is degenerate. By characterizing successively non-uniform flows and unsteady flows as relative equilibria, a generalization of criticality is immediate. Recent results on the local nonlinear behaviour near a degenerate relative equilibrium are used to predict all the qualitative properties of the bifurcating dark solitary waves, including the phase shift. The theory of secondary criticality provides new insight into unsteady waves in shallow water as well. A new interpretation of the Benjamin-Feir instability from the viewpoint of hydraulics, and the connection with the creation of unsteady dark solitary waves, is given in Part 2. © 2006 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-04-24
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-03-09
    Description: We present a numerical study of the structure and stability of laminar isothermal flows formed by two counterflowing jets of an incompressible Newtonian fluid. We demonstrate that symmetric counterflowing jets with identical mass flow rates exhibit multiple steady states and, in certain cases, time-dependent (periodic) steady states. Two geometric configurations were studied based on the inlet jet shapes: planar and axisymmetric. Stagnation flows formed by planar counterflowing jets exhibit both steady-state multiplicity and time-dependent behaviour, while axisymmetric jets exhibit only a steady-state multiplicity. A linearized bifurcation and stability analysis based on the continuity and Navier-Stokes equations revealed transitions between a single (symmetric) steady state and multiple steady states or periodic steady states. The dimensionless quantities forming the parameter space of this system are the inlet Reynolds number (Re) and a geometric aspect ratio α, equal to the jet inlet characteristic length (used for calculating Re) divided by the jet separation. The boundaries separating different flow regimes have been identified in the (Re, α) parameter space. The resulting flow maps are useful for the design and operation of counterflow jet reactors. © 2006 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-09-24
    Description: The diffusive behaviour of swimming micro-organisms should be clarified in order to obtain a better continuum model for cell suspensions. In this paper, a swimming micro-organism is modelled as a squirming sphere with prescribed tangential surface velocity, in which the centre of mass of the sphere may be displaced from the geometric centre (bottom-heaviness). Effects of inertia and Brownian motion are neglected, because real micro-organisms swim at very low Reynolds numbers but are too large for Brownian effects to be important. The three-dimensional movement of 64 or 27 identical squirmers in a fluid otherwise at rest, contained in a cube with periodic boundary conditions, is dynamically computed, for random initial positions and orientations. The computation utilizes a database of pairwise interactions that has been constructed by the boundary element method. In the case of (non-bottom-heavy) squirmers, both the translational and the orientational spreading of squirmers is correctly described as a diffusive process over a sufficiently long time scale, even though all the movements of the squirmers were deterministically calculated. Scaling of the results on the assumption that the squirmer trajectories are unbiased random walks is shown to capture some but not all of the main features of the results. In the case of (bottom-heavy) squirmers, the diffusive behaviour in squirmers' orientations can be described by a biased random walk model, but only when the effect of hydrodynamic interaction dominates that of the bottom-heaviness. The spreading of bottom-heavy squirmers in the horizontal directions show diffusive behaviour, and that in the vertical direction also does when the average upward velocity is subtracted. The rotational diffusivity in this case, at a volume fraction c = 0.1, is shown to be at least as large as that previously measured in very dilute populations of swimming algal cells (Chlamydomonas nivalis). © 2007 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...