ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (369)
  • 2005-2009  (365)
  • 1960-1964  (4)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2019-07-13
    Description: To prepare for the exploration of Mars by humans, as outlined in the new national vision for Space Exploration (VSE), the Mars Exploration Program Analysis Group (MEPAG), chartered by NASA's Mars Exploration Program (MEP), formed a Human Exploration of Mars Science Analysis Group (HEM-SAG), in March 2007. HEM-SAG was chartered to develop the scientific goals and objectives for the human exploration of Mars based on the Mars Scientific Goals, Objectives, Investigations, and Priorities.1 The HEM-SAG is one of several humans to Mars scientific, engineering and mission architecture studies chartered in 2007 to support NASA s plans for the human exploration of Mars. The HEM-SAG is composed of about 30 Mars scientists representing the disciplines of Mars biology, climate/atmosphere, geology and geophysics from the U.S., Canada, England, France, Italy and Spain. MEPAG selected Drs. James B. Garvin (NASA Goddard Space Flight Center) and Joel S. Levine (NASA Langley Research Center) to serve as HEMSAG co-chairs. The HEM-SAG team conducted 20 telecons and convened three face-to-face meetings from March through October 2007. The management of MEP and MEPAG were briefed on the HEM-SAG interim findings in May. The HEM-SAG final report was presented on-line to the full MEPAG membership and was presented at the MEPAG meeting on February 20-21, 2008. This presentation will outline the HEM-SAG biology and climate/atmosphere goals and objectives. A companion paper will outline the HEM-SAG geology and geophysics goals and objectives.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 39th Lunar and Planetary Sciences Conference; Mar 10, 2008 - Mar 14, 2008; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: The identification of lunar resources such as water is a fundamental component of the the NASA Vision for Space Exploration. The Lunar Prospector mission detected high concentrations of hydrogen at the lunar poles that may indicate the presence of water or other volatiles in the lunar regolith [1]. One explanation for the presence of enhanced hydrogen in permanently shadowed crater regions is long term trapping of water-ice delivered by comets, asteroids, and other meteoritic material that have bombarded the Moon over the last 4 billion years [2]. It is also possible that the hydrogen signal at the lunar poles is due to hydrogen implanted by the solar wind which is delayed from diffusing out of the regolith by the cold temperatures [3]. Previous measurements of the lunar atmosphere by the LACE experiment on Apollo 17, suggested the presence of cold trapped vola'tiles that were expelled by solar heating [4]. In situ composition and isotopic analyses of the lunar regolith will be required to establish the abundance, origin, and distribution of water-ice and other volatiles at the lunar poles. Volatile Analysis by Pyrolysis of Regolith (VAPoR) on the Moon using mass spectrometry is one technique that should be considered. The VAPoR pyrolysis-mass spectrometer (pyr-MS) instrument concept study was selected for funding in 2007 by the NASA Lunar Sortie Science Opportunities (LSSO) Program. VAPoR is a miniature version of the Sample Analysis at Mars (SAM) instrument suite currently being developed at NASA Goddard for the 2009 Mars Science Laboratory mission (Fig. 1).
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-11
    Description: We have collected roughly 1,000 line-km of airborne radar sounding data over glaciers, rock/ice glaciers, permafrost, subsurface ice bodies, ice-covered saline lakes, and glacial deposits in Taylor and Beacon Valley. These data are being analyzed in order to develop techniques for discriminating between subsurface and off-nadir echoes and for detecting and characterizing subsurface interfaces. The identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water, and the importance of such features to the search for water on Mars, highlights the need for appropriate terrestrial analogs and analysis techniques in order to prepare for radar sounder missions to Mars. Climatic, hydrological, and geological conditions in the Dry Valleys of Antarctica are analogous in many ways to those on Mars. A crucial first step in the data analysis process is the discrimination of echo sources in the radar data. The goal is to identify all returns from the surface of off-nadir topography in order to positively identify subsurface echoes. This process will also be critical for radar data that will be collected in areas of Mars exhibiting significant topography, so that subsurface echoes are identified unambiguously. The positive detection and characterization of subsurface (including sub-ice) water is a primary goal of NASA's Mars exploration program. Our data over the Dry Valleys provides an opportunity to implement techniques we are developing to accomplish these goals.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Radar Investigations of Planetary and Terrestrial Environments; 45-46; LPI-Contrib-1231
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The two Miniaturized Moessbauer Spectrometers (MIMOS II) on board the two Mars Exploration Rovers Spirit and Opportunity have now been collecting important scientific data for more than four years. The spectrometers provide information about Fe-bearing mineral phases and determine Fe oxidation states. The total amount of targets analized exceeds 600, the total integration time exceeds 260 days for both rovers. Since landing, more than five half-lives of the Co-57 MB sources have past (intensity at the time of landing approx. 150 mCi). Current integration times are about 50 hours in order to achieve reasonable statistics as opposed to 8 hours at the beginning of the mission. In total, 13 different mineral phases were detected: Olivine, pyroxene, hematite, magnetite and nanophase ferric oxide were detected at both landing sites. At Gusev, ilmenite, goethite, a ferric sulfate phase and a yet unassigned phase (in the rock Fuzzy Smith) were detected. At Meridiani, jarosite, metallic iron in meteoritic samples (kamacite), troilite, and an unassigned ferric phase were detected. Jarosite and goethite are of special interest, as these minerals are indicators for water activity. In this abstract, an overview of Moessbauer results will be given, with a focus on data obtained since the last martian winter. The MER mission has proven that Moessbauer spectroscopy is a valuable tool for the in situ exploration of extraterrestrial bodies and for the study of Febearing samples. The experience gained through the MER mission makes MIMOS II a obvious choice for future missions to Mars and other targets. Currently, MIMOS II is on the scientific payload of two approved future missions: Phobos Grunt (Russian Space Agency; 2009) and ExoMars (European Space Agency; 2013).
    Keywords: Lunar and Planetary Science and Exploration
    Type: 39th Lunar and Planetary Science Conference; Mar 10, 2008 - Mar 14, 2008; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The purpose of this noble gas investigation was to evaluate the possibility of measuring noble gases in martian rocks and air by future robotic missions such as the Mars Science Laboratory (MSL). The MSL mission has, as part of its payload, the Sample Analysis at Mars (SAM) instrument, which consists of a pyrolysis oven integrated with a GCMS. The MSL SAM instrument has the capability to measure noble gas compositions of martian rocks and atmosphere. Here we suggest the possibility of K-Ar age dating based on noble gas release of martian rocks by conducting laboratory simulation experiments on terrestrial basalts and martian meteorites. We provide requirements for the SAM instrument to obtain adequate noble gas abundances and compositions within the current SAM instrumental operating conditions, especially, a power limit that prevents heating the furnace above approx.1100 C. In addition, Martian meteorite analyses from NASA-JSC will be used as ground truth to evaluate the feasibility of robotic experiments to constrain the ages of martian surface rocks.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-18017 , Lunar Planetary Science Conference; Mar 23, 2009 - Mar 27, 2009; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-02
    Description: The seven known Martian nakhlites are Nakhla, Lafayette, Governador Valadares, and four recent finds from hot and cold deserts: MIL03346 from the Transantarctic Mountains, a paired group from the Yamato Mountains (Y000593, Y000749, and Y000802, and two from Morocco (NWA998 and NWA817. Radiometric ages (Sm-Nd, Rb-Sr, U-Pb, and Ar-Ar) for the first three nakhlites, along with Chassigny, fall in the range of 1.19-1.37 Gyr and may suggest a common formation age. These meteorites also show very similar cosmic-ray (space) exposure ages, suggesting a single ejection event from Mars. The ages for nakhlites are different from those of Martian shergottites, whose radiometric ages vary by nearly a factor of three (approx. 165-475 Myr) and whose space exposure ages vary over a factor of approx. 20. Shergottite ages suggest that multiple locations on the Martian surface have been sampled, whereas nakhlite data imply sampling of only one Mars surface location. Because older Martian surfaces are expected to be more abundant, it seems surprising that all nakhlites would represent only one Martian impact event. To address this issue, we are measuring the (39)Ar-(40)Ar ages of Y-000593, NWA-998, Nakhla, and MIL-03346, and the space (CRE) exposure age of NWA998. Additional information is included in the original extended abstract.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 7; LPI-Contrib-1234-Pt-7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-11
    Description: Spirit landed on the floor of Gusev Crater and conducted initial operations on soil covered, rock-strewn cratered plains underlain by olivine-bearing basalts. Plains surface rocks are covered by wind-blown dust and show evidence for surface enrichment of soluble species as vein and void-filling materials and coatings. The surface enrichment is the result of a minor amount of transport and deposition by aqueous processes. Layered granular deposits were discovered in the Columbia Hills, with outcrops that tend to dip conformably with the topography. The granular rocks are interpreted to be volcanic ash and/or impact ejecta deposits that have been modified by aqueous fluids during and/or after emplacement. Soils consist of basaltic deposits that are weakly cohesive, relatively poorly sorted, and covered by a veneer of wind blown dust. The soils have been homogenized by wind transport over at least the several kilometer length scale traversed by the rover. Mobilization of soluble species has occurred within at least two soil deposits examined. The presence of mono-layers of coarse sand on wind-blown bedforms, together with even spacing of granule-sized surface clasts, suggest that some of the soil surfaces encountered by Spirit have not been modified by wind for some time. On the other hand, dust deposits on the surface and rover deck have changed during the course of the mission. Detection of dust devils, monitoring of the dust opacity and lower boundary layer, and coordinated experiments with orbiters provided new insights into atmosphere-surface dynamics.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: The combined use of altimetry, Earth-based Doppler and Earth-based range measurements in the lunar reconnaissance orbiter (LRO) mission (Chin et al. in Space Sci Rev 129:391-419, 2007) has been examined in a simulation study. It is found that in the initial phases of the mission orbit and altimeter geolocation accuracies should be better than 10m in the radial component and 60m overall. It is demonstrated that LRO's precise 1-way laser range measurement from Earth-based stations (Smith et al. in Proceedings of the 15th International Laser Ranging Workshop, Canberra, Australia, October 15-20, 2006) will be useful for gravity recovery. The advantages of multiple laser beams are demonstrated for altimeter calibration, orbit determination and gravity recovery in general planetary settings as well as for LRO.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Journal of Geodesy; Volume 83; No. 8; 709-721
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-10-02
    Description: Prior to Cassini s arrival at Saturn, most of what was known about the composition of the plasma in Saturn s environment was derived from limited measurements by Pioneer 11 and Voyager 1 and 2 in 1979-1981[1-3]. The measurements reported here were made by the Cassini Plasma Spectrometer (CAPS) [4] during the first two Cassini orbits, including the closest approach to Saturn and the rings during the tour, and a close flyby of Titan. The CAPS instrument resolves ion energy/charge from 1 V to 50 kV and ion mass/charge from 1 to approx.100 amu/e, and it measures electron energy from 1 eV to 28 keV. Initial composition measurements of Saturn s magnetosphere show that protons dominate outside approx.8 R(sub s), while inside this radius the plasma is dominated by a mix of water-derived ions and N(+). Over the A and B rings a plasma layer is observed composed of O2(+) and O(+) . The close passage near Titan shows a rich network of both positive and negative molecular ions. We report preliminary analysis of these and other composition findings.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 17; LPI-Contrib-1234-Pt-17
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-10-02
    Description: Laboratory studies, simulations and desert field tests all indicate that aeolian mixing dust can generate electricity via contact electrification or "triboelectricity". In convective structures like dust devils or storms, grain stratification (or charge separation) occurs giving rise to an overall electric dipole moment to the aeolian feature, similar in nature to the dipolar electric field generated in terrestrial thunderstorms. Previous simulation studies [1] indicate that this storm electric field on Mars can approach atmospheric breakdown field strength of 20 kV/m. In terrestrial dust devils, coherent dipolar electric fields exceeding 20 kV/m have been measured directly via electric field instrumentation. Given the expected electrostatic fields in Martian dust devils and storms, electrons in the low pressure CO2 gas can be energized via the electric field to values exceeding the electron dissociative attachment energy of both CO2 and H2O, resulting in the formation of new chemical products CO and O- and OH and H- within the storm. Using a collisional plasma physics model we present a calculation of the CO/O- and OH/H- reaction and production rates. We demonstrate that these rates vary geometrically with ambient electric field, with substantial production of dissociative products when fields approach breakdown levels of 20-30 kV/m.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 6; LPI-Contrib-1234-Pt-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...