ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (31)
  • 1990-1994  (23)
  • 1
    Monograph available for loan
    Monograph available for loan
    Cambridge [u.a.] : Cambridge University Press
    Call number: AWI A13-92-0466 ; PIK N 456-93-0113
    Description / Table of Contents: Contents: Preface. - Acknowledgements. - The authors. - Acronyms. - Notation. - Physical constants. - PART 1: INTRODUCTION. - 1 Introduction to climate modeling. - 2 Human components of the climate system. - PART 2: THE SCIENCE: SUBSYSTEMS AND PROCESSES. - 3 The atmosphere. - 4 The ocean circulation. - 5 Land surface. - 6 Terrestrial ecosystems. - 7 Atmospheric chemistry. - 8 Marine biogeochemistry. - PART 3: MODELING AND PARAMETERIZATION. - 9 Climate system simulation: basic numerical & computational concepts. - 10 Atmospheric general circulation modeling. - 11 Ocean general circulation modeling. - 12 Sea ice models. - 13 Land ice and climate. - 14 Biophysical models of land surface processes. - 15 Chemistry-transport models. - 16 Biogeochemical ocean models. - PART 4: COUPLINGS AND INTERACTIONS. - 17 Global coupled models: atmosphere, ocean, sea ice. - 18 Tropical pacific ENSO models: ENSO as a mode of the coupled system. - PART 5: SENSITIVITY EXPERIMENTS AND APPLICATIONS. - 19 Climate variability simulated in GCMs. - 20 Climate-model responses to increased CO2 and other greenhouse gases. - 21 Modeling large climatic changes of the past. - 22 Changes in land use. - PART 6: FUTURE PROSPECTS. - 26 Climate system modeling prospects. - References. - Index
    Description / Table of Contents: It is now widely recognized that human activities are transforming the global environment. What will be the changes in climate caused by anthropogenic influences and how do these compare with natural variations? To address these questions there is an urgent need to understand and model the global climate system effectively. A central role of climate system models will be to help determine possible impacts and help guide possible future policies. Climate System Modeling provides a thorough grounding in climate dynamics and the issues involved but also the mathematical, physical, chemical and biological basis for the component models and the sources of uncertainty, the assumptions made and approximations introduced. Climate system models go beyond climate models to include all aspects of the climate system: the atmosphere, the ocean, the cryosphere (including snow, sea ice, and glaciers), the biosphere and terrestrial ecosystems, other land surface processes and additional parts of the hydrosphere including ricers, and all the complex interactions between these components. The biogeochemical cycles in both the atmosphere and the ocean are dealt with in detail, potentially allowing the carbon cycle, for instance, to be treated with some veracity. Instead of projecting and specifying what future atmospheric concentrations of carbon dioxide and methane might be, the goal of these models is to deal comprehensively with the carbon cycle and predict the future evolution of greenhouse gas concentrations, as well as the impact of those changes on the physical climate. Climate System Modeling is a comprehensive text which will appeal to students and researchers concerned with any aspect of climate and the study of related topics in the earth and environmental sciences.
    Type of Medium: Monograph available for loan
    Pages: XXIX, 788 S. : graph. Darst.
    ISBN: 0521432316
    Location: A 18 - must be ordered
    Branch Library: AWI Library
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 10 (1994), S. 107-134 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. The heat budget has been computed locally over the entire globe for each month of 1988 using compatible top-of-the-atmosphere radiation from the Earth Radiation Budget Experiment combined with European Centre for Medium Range Weather Forecasts atmospheric data. The effective heat sources and sinks (diabatic heating) and effective moisture sources and sinks for the atmosphere are computed and combined to produce overall estimates of the atmospheric energy divergence and the net flux through the Earth's surface. On an annual mean basis, this is directly related to the divergence of the ocean heat transport, and new computations of the ocean heat transport are made for the ocean basins. Results are presented for January and July, and the annual mean for 1988, along with a comprehensive discussion of errors. While the current results are believed to be the best available at present, there are substantial shortcomings remaining in the estimates of the atmospheric heat and moisture budgets. The issues, which are also present in all previous studies, arise from the diurnal cycle, problems with atmospheric divergence, vertical resolution, spurious mass imbalances, initialized versus uninitialized atmospheric analyses, and postprocessing to produce the atmospheric archive on pressure surfaces. Over land, additional problems arise from the complex surface topography, so that computed surface fluxes are more reliable over the oceans. The use of zonal means to compute ocean transports is shown to produce misleading results because a considerable part of the implied ocean transports is through the land. The need to compute the heat budget locally is demonstrated and results indicate lower ocean transports than in previous residual calculations which are therefore more compatible with direct ocean estimates. A Poisson equation is solved with appropriate boundary conditions of zero normal heat flux through the continental boundaries to obtain the ocean heat transport. Because of the poor observational data base, adjustments to the surface fluxes are necessary over the southern oceans. Error bars are estimated based on the large-scale spurious residuals over land of 30 W m–2 over 1000 km scales (1012 m2). In the Atlantic Ocean, a northward transport emerges at all latitudes with peak values of 1.1±0.2 PW (1 standard error) at 20 to 30 °N. Comparable values are achieved in the Pacific at 20 °N, so that the total is 2.1±0.3 PW. The peak southward transport is at 15 to 20 °S of 1.9±0.3 PW made up of strong components from both the Pacific and Indian Oceans and with a heat flux from the Pacific into the Indian Ocean in the Indonesian throughflow. The pattern of poleward heat fluxes is suggestive of a strong role for Ekman transports in the tropical regions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 9 (1994), S. 303-319 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. Considerable evidence has emerged of a substantial decade-long change in the north Pacific atmosphere and ocean lasting from about 1976 to 1988. Observed significant changes in the atmospheric circulation throughout the troposphere revealed a deeper and eastward shifted Aleutian low pressure system in the winter half year which advected warmer and moister air along the west coast of North America and into Alaska and colder air over the north Pacific. Consequently, there were increases in temperatures and sea surface temperatures (SSTs) along the west coast of North America and Alaska but decreases in SSTs over the central north Pacific, as well as changes in coastal rainfall and streamflow, and decreases in sea ice in the Bering Sea. Associated changes occurred in the surface wind stress, and, by inference, in the Sverdrup transport in the north Pacific Ocean. Changes in the monthly mean flow were accompanied by a southward shift in the storm tracks and associated synoptic eddy activity and in the surface ocean sensible and latent heat fluxes. In addition to the changes in the physical environment, the deeper Aleutian low increased the nutrient supply as seen through increases in total chlorophyll in the water column, phytoplankton and zooplankton. These changes, along with the altered ocean currents and temperatures, changed the migration patterns and increased the stock of many fish species. A north Pacific (NP) index is defined to measure the decadal variations, and the temporal variability of the index is explored on daily, annual, interannual and decadal time scales. The dominant atmosphere-ocean relation in the north Pacific is one where atmospheric changes lead SSTs by one to two months. However, strong ties are revealed with events in the tropical Pacific, with changes in tropical Pacific SSTs leading SSTs in the north Pacific by three months. Changes in the storm tracks in the north Pacific help to reinforce and maintain the anomalous circulation in the upper troposphere. A hypothesis is put forward outlining the tropical and extratropical realtionships which stresses the role of tropical forcing but with important feedbacks in the extratropics that serve to emphasize the decadal relative to interannual time scales. The Pacific decadal timescale variations are linked to recent changes in the frequency and intensity of El Niño versus La Niña events but whether climate change associated with ”global warming" is a factor is an open question.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 10 (1994), S. 107-134 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The heat budget has been computed locally over the entire globe for each month of 1988 using compatible top-of-the-atmosphere radiation from the Earth Radiation Budget Experiment combined with European Centre for Medium Range Weather Forecasts atmospheric data. The effective heat sources and sinks (diabatic heating) and effective moisture sources and sinks for the atmosphere are computed and combined to produce overall estimates of the atmospheric energy divergence and the net flux through the Earth's surface. On an annual mean basis, this is directly related to the divergence of the ocean heat transport, and new computations of the ocean heat transport are made for the ocean basins. Results are presented for January and July, and the annual mean for 1988, along with a comprehensive discussion of errors. While the current results are believed to be the best available at present, there are substantial shortcomings remaining in the estimates of the atmospheric heat and moisture budgets. The issues, which are also present in all previous studies, arise from the diurnal cycle, problems with atmospheric divergence, vertical resolution, spurious mass imbalances, initialized versus uninitialized atmospheric analyses, and postprocessing to produce the atmospheric archive on pressure surfaces. Over land, additional problems arise from the complex surface topography, so that computed surface fluxes are more reliable over the oceans. The use of zonal means to compute ocean transports is shown to produce misleading results because a considerable part of the implied ocean transports is through the land. The need to compute the heat budget locally is demonstrated and results indicate lower ocean transports than in previous residual calculations which are therefore more compatible with direct ocean estimates. A Poisson equation is solved with appropriate boundary conditions of zero normal heat flux through the continental boundaries to obtain the ocean heat transport. Because of the poor observational data base, adjustments to the surface fluxes are necessary over the southern oceans. Error bars are estimated based on the large-scale spurious residuals over land of 30 W m−2 over 1000 km scales (1012 m2). In the Atlantic Ocean, a northward transport emerges at all latitudes with peak values of 1.1±0.2 PW (1 standard error) at 20 to 30°N. Comparable values are achieved in the Pacific at 20°N, so that the total is 2.1±0.3 PW. The peak southward transport is at 15 to 20°S of 1.9±0.3 PW made up of strong components from both the Pacific and Indian Oceans and with a heat flux from the Pacific into the Indian Ocean in the Indonesian throughflow. The pattern of poleward heat fluxes is suggestive of a strong role for Ekman transports in the tropical regions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 9 (1994), S. 303-319 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Considerable evidence has emerged of a substantial decade-long change in the north Pacific atmosphere and ocean lasting from about 1976 to 1988. Observed significant changes in the atmospheric circulation throughout the troposphere revealed a deeper and eastward shifted Aleutian low pressure system in the winter half year which advected warmer and moister air along the west coast of North America and into Alaska and colder air over the north Pacific. Consequently, there were increases in temperatures and sea surface temperatures (SSTs) along the west coast of North America and Alaska but decreases in SSTs over the central north Pacific, as well as changes in coastal rainfall and streamflow, and decreases in sea ice in the Bering Sea. Associated changes occurred in the surface wind stress, and, by inference, in the Sverdrup transport in the north Pacific Ocean. Changes in the monthly mean flow were accompanied by a southward shift in the storm tracks and associated synoptic eddy activity and in the surface ocean sensible and latent heat fluxes. In addition to the changes in the physical environment, the deeper Aleutian low increased the nutrient supply as seen through increases in total chlorophyll in the water column, phytoplankton and zooplankton. These changes, along with the altered ocean currents and temperatures, changed the migration patterns and increased the stock of many fish species. A north Pacific (NP) index is defined to measure the decadal variations, and the temporal variability of the index is explored on daily, annual, interannual and decadal time scales. The dominant atmosphere-ocean relation in the north Pacific is one where atmospheric changes lead SSTs by one to two months. However, strong ties are revealed with events in the tropical Pacific, with changes in tropical Pacific SSTs leading SSTs in the north Pacific by three months. Changes in the storm tracks in the north Pacific help to reinforce and maintain the anomalous circulation in the upper troposphere. A hypothesis is put forward outlining the tropical and extratropical realtionships which stresses the role of tropical forcing but with important feed-backs in the extratropics that serve to emphasize the decadal relative to interannual time scales. The Pacific decadal timescale variations are linked to recent changes in the frequency and intensity of El Niño versus La Nina events but whether climate change associated with “global warming” is a factor is an open question.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-02-01
    Print ISSN: 0031-9228
    Electronic ISSN: 1945-0699
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-07-01
    Print ISSN: 0036-8733
    Electronic ISSN: 1946-7087
    Topics: Biology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-10-15
    Description: The climate is changing because of human activities and will continue to do so regardless of any mitigation actions. Available climate observations and information are also changing as technological advances take place. Accordingly, an overview is given of a much-needed potential climate information system that embraces a comprehensive observing system to observe and track changes and the forcings of the system as they occur, and that develops the ability to relate one to the other and understand changes and their origins. Observations need to be taken in ways that satisfy the climate monitoring principles and ensure long-term continuity, and that have the ability to discern small but persistent signals. Some benchmark observations are proposed to anchor space-based observations and trends, including a much-needed step forward in the quality of water vapor observations. Satellite observations must be calibrated and validated, with orbital decay and drift effects fully dealt with if possible, and adequate overlap to ensure continuity. The health of the monitoring system must be tracked and resources identified to address issues. Fields must be analyzed into global products and delivered to users while stakeholder needs are fully considered. Data should be appropriately archived with full and open access, along with metadata that fully describe the observing system status and environment in which it operates. Reanalysis of the records must be institutionalized along with continual assessment of impacts of new observing and analysis systems. Some products will be used to validate and improve models, as well as initialize models and predict future evolution on multiple time scales using ensembles. Attribution of changes to causes is essential, and it is vital to fully assess past changes and model performance and results in making predictions to help appraise reliability and assess impacts regionally on the environment, human activities, and sectors of the economy. In particular, a revolution in the way developing countries use and apply climate information is expected. Such a system will be invaluable and further provides a framework for setting priorities of new observations and related activities. Without the end-to-end process the investments will not deliver adequate return and our understanding will be much less than it would be otherwise.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-05-15
    Description: Meridional structure and transports of energy in the atmosphere, ocean, and land are evaluated holistically for the mean and annual cycle zonal averages over the ocean, land, and global domains, with discussion and assessment of uncertainty. At the top of the atmosphere (TOA), adjusted radiances from the Earth Radiation Budget Experiment (ERBE) and Clouds and Earth’s Radiant Energy System (CERES) are used along with estimates of energy storage and transport from two global reanalysis datasets for the atmosphere. Three ocean temperature datasets are used to assess changes in the ocean heat content (OE) and their relationship to the net upward surface energy flux over ocean (FoS), which is derived from the residual of the TOA and atmospheric energy budgets. The surface flux over land is from a stand-alone simulation of the Community Land Model forced by observed fields. In the extratropics, absorbed solar radiation (ASR) achieves a maximum in summer with peak values near the solstices. Outgoing longwave radiation (OLR) maxima also occur in summer but lag ASR by 1–2 months, consistent with temperature maxima over land. In the tropics, however, OLR relates to high cloud variations and peaks late in the dry monsoon season, while the OLR minima in summer coincide with deep convection in the monsoon trough at the height of the rainy season. Most of the difference between the TOA radiation and atmospheric energy storage tendency is made up by a large heat flux into the ocean in summer and out of the ocean in winter. In the Northern Hemisphere, the transport of energy from ocean to land regions is substantial in winter, and modest in summer. In the Southern Hemisphere extratropics, land − ocean differences play only a small role and the main energy transport by the atmosphere and ocean is poleward. There is reasonably good agreement between FoS and observed changes in OE, except for south of 40°S, where differences among several ocean datasets point to that region as the main source of errors in achieving an overall energy balance. The winter hemisphere atmospheric circulation is the dominant contributor to poleward energy transports outside of the tropics [6–7 PW (1 petawatt = 1015 W)], with summer transports being relatively weak (∼3 PW)—slightly more in the Southern Hemisphere and slightly less in the Northern Hemisphere. Ocean transports outside of the tropics are found to be small (
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-09-15
    Description: The trends of the surface water and energy budget components in the Mississippi River basin from 1948 to 2004 are investigated using a combination of hydrometeorological observations and observation-constrained simulations of the land surface conditions using the latest version of the Community Land Model version 3 (CLM3). The atmospheric forcing data for the CLM3 were constructed by adding the intramonthly variations from the 6-hourly National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis to observation-based analyses of monthly precipitation, surface air temperature, and cloud cover. The model-based analysis suggests that, for the surface water budget, the observed increase in basin-averaged precipitation is compensated by increases in both runoff and evapotranspiration. For the surface energy budget, the decrease of net shortwave radiation associated with observed increases in cloudiness is compensated by decreases in both net longwave radiation and sensible heat flux, while the latent heat flux increases in association with wetter soil conditions. Both the simulated surface water and energy budgets support the view that evapotranspiration has increased in the Mississippi River basin from 1948 to 2004. Sensitivity experiments show that the precipitation change dominates the evapotranspiration trend, while the temperature and solar radiation changes have only small effects. Large spatial variations within the Mississippi River basin and the contiguous United States are also found. However, the increased evapotranspiration is ubiquitous despite spatial variations in hydrometeorology.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...