ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (302)
  • 1995-1999  (203)
Collection
Years
Year
  • 1
    Monograph available for loan
    Monograph available for loan
    Beijing [u.a.] : O'Reilly
    Call number: PIK M 032-08-0203 ; PIK M 032-08-0277
    Type of Medium: Monograph available for loan
    Pages: XXXIII, 807 S.
    Edition: 2. ed.
    ISBN: 9780596007973
    Location: A 18 - must be ordered
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2007-11-16
    Description: We previously identified a new AML category carrying NPM1 mutations which lead to aberrant cytoplasmic expression of the nucleolar protein NPM1, hence the term NPMc+ AML[Falini et al, NEJM 2005]. This leukemia accounts for about one-third of adult AML and shows distinctive biological and clinical features[Falini et al, Blood 2007]. Notably, AML carrying NPM1 mutations in the absence of FLT3-ITD are characterized by a favourable prognosis. However, still a proportion of NPMc+ AML cannot be cured by conventional treatments and new therapeutic strategies need to be explored. We previously identified OCI/AML3 as the only human AML cell line carrying cytoplasmic mutated NPM (type A) in the absence of FLT3-ITD[Quentmeier et al, Leukemia 2005]. Because of these features and the ability to engraft in NOD/SCID mice, the OCI-AML3 represents a remarkable tool for the study of NPMc+ AML. Previous findings that ATRA exerts growth inhibitory effects on the OCI/AML3 prompt us to investigate the molecular mechanisms underlying the response to ATRA, with focus on the NPM mutant protein. As cellular model for our studies, we also used primary leukemia cells originated from a patient with NPMc+ AML (mutation A) bearing FLT3-ITD (Mont1) that have been propagated in NOD/SCID mice for 5 years without loss of initial characteristics. Early cell cycle arrest and proapoptotic effects of pharmacological doses of ATRA were confirmed in both cellular models in vitro. Morphological signs of differentiation were not evident. Western blot analysis using specific antibodies showed marked downregulation of the leukemic NPM1 mutant protein upon ATRA treatment, preceding apoptosis activation. On the other hand, wild-type NPM1 protein levels remained unchanged, leading to a condition of NPM1 haploinsufficiency. Semi-quantitative RT-PCR for NPM mutant A showed no change in mRNA expression following treatment, suggesting a regulation of the NPM mutant protein expression at post-transcriptional level. Indeed, concomitant treatment with proteasome-inhibitors partly reverted this effect. Downregulation of NPM mutant protein preceded activation of caspase-8 and caspase-3, PARP-cleavage and Bax activation. No NF-kB activation was observed upon ATRA treatment. Activation of the p53-dependent pathway was a later event, as expected in conditions of NPM1 haploinsufficiency. Importantly, these results were confirmed in the primary NPMc+ AML cells from patient Mont1. Activation of caspase-8 suggests that the response to ATRA in NPMc+ AML cells may be mediated through the death receptor pathway. Although protein levels of TRAIL, TRAIL receptors and TNF-alpha receptors seem to be unaffected, it might be possible that the NPM1 mutant protein modulates the signalling through death cell receptors. Analysis of ATRA-induced transcriptome and proteome modifications in NPMc+ AML is ongoing and will be also presented, as well as further pre-clinical studies on patients’ primary AML cells and in NOD/SCID mice. In conclusion, our data suggest that NPM mutant protein might be involved in the in vitro response to ATRA in AML cells carrying NPM1 mutations. Figure Figure
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-11-16
    Description: Acute myeloid leukemia expressing mutated NPM1 gene and cytoplasmic nucleophosmin (NPMc+ AML) [Falini B et al, NEJM2005;352:254–266] is a new entity of WHO classification that shows distinctive biological and clinical features, including a unique molecular signature characterized by downregulation of CD34 and upregulation of most HOX genes [Falini B et al, Blood2007;109:874–885]. Involvement of HOX genes in the maintenance of the stem-cell phenotype strongly suggest that AML with mutated NPM1 originates from a multipotent hematopoietic progenitor (HSC). This view is also supported by immunohistological findings showing that AML with mutated NPM1 frequently displays multilineage involvement [Pasqualucci L et al, Blood2006;108:4146–4155]. On the other hand, the frequent negativity of NPMc+ AML for the HSC-associated antigen CD34 raises the question of whether the mutation event occurs in a CD34-negative HSC (these cells have been identified in mice) or whether a minimal pool of CD34-positive NPM1-mutated leukemic cells does exist. Currently, the hierarchical level of stem cell involvement in NPMc+ AML is unknown. To address this issue, we purified CD34+ cells from NPMc+ AML patients and detected NPM1 mutant protein in the sorted population by Western blot with anti-NPM mutant specific antibodies [Martelli MP et al, Leukemia 2008] (Figure 1A). We investigated 6 NPMc+ AML patients presenting at diagnosis with 0.12%, 0.14%, 0.38%, 5%, 22%, and 28% of CD34+ cells in the peripheral blood. In all cases, CD34+ fractions (purity 〉90%) harboured NPM1 mutant protein, indicating they belong to the leukemic clone (Figure 1B). The percentage of most undifferentiated CD34+/CD38− cells in the CD34+ fractions ranged from 5 to 97%. Notably, in at least one case, all CD34+ NPM1-mutated leukemic cells were CD38−negative. Moreover in all cases, CD34+ NPM1-mutated leukemic cells appeared to express CD123 (IL-3 receptor), considered a marker of the leukemic stem cell and target of potential therapy. Double staining of bone marrow biopsies with anti-CD34 and anti-NPM antibodies revealed that the rare CD34+ cells expressed NPM1 aberrantly in the cytoplasm. Inoculation of CD34+ NPM1-mutated AML cells into sublethally irradiated NOD/SCID mice resulted into leukemia engrafment in various body sites, especially bone marrow, spleen, lung and liver. Preliminary results showed that CD34+ leukemic cells reacquired the same leukemic phenotype as the original patient’s, including CD34-negativity of the leukemic bulk in spite of any lack of differentiation. This finding suggests that NPM1 mutant protein may be involved in downregulation of CD34 antigen, while keeping a gene expression profile typical of the hematopoietic stem cell. These findings suggest the CD34+ fraction contains the SCID-leukemia initiating cells (SL-IC) and point to CD34+/CD38− HSC as the cell of origin of AML with mutated NPM1. Figure Figure
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2009-11-20
    Description: Abstract 4135 Acute myeloid leukemia (AML) expressing mutated NPM1 gene and cytoplasmic nucleophosmin (NPMc+ AML) [Falini B et al, NEJM 2005;352:254-266] is a new entity of WHO classification that shows distinctive biological and clinical features. AML with mutated NPM1 usually presents with a high white blood cell count; the bone marrow biopsy is usually markedly hypercellular and leukemic cells frequently show myelomonocytic or monocytic features, with dysplasia and involvement of two or more cell lineages in about 25% of cases. Lack, or low expression, of CD34 in over 90% of cases is the most distinctive immunophenotypic feature of NPM1-mutated AML and is independent of leukemic cell maturation. NPM1 gene mutation without concomitant FLT3-ITD identify a subgroup of AML patients with a favorable prognosis and has been associated with an approximately 50-60% probability of survival at 5 years in younger patients. Here we report 4 out of 41 (10%) patients, admitted at our Hospital in the last year, with new-diagnosed AML with mutated NPM1 presenting with life-threatening thromboembolic (either arterial or venous) events. The main characteristics of these patients are summarized in Table 1. The patients had neither personal nor family history concerning thromboembolism. Hyperleukocytosis was a common feature of the vast majority of NPM1-mutated AML patients at diagnosis. Immunophenotypic analysis did not show a peculiar phenotype in these patients. Table 1 Characteristics of patients with NPM1-mutated AML and thrombosis. Case report no Age Sex (M/F) FAB subtype WBC/mmc Type of thrombosis Site of thrombosis 1 41 F M1 14970 arterial Anterior interventricular branch of left coronary artery 2 56 M M4 93990 arterial external iliac and femoral (right limb) 3 63 M M2 113000 deep venous great saphenous veins (bilateral) 4 73 F M4 190000 deep venous iliac and femoral In two patients (cases 1 and 2), the arterial thromboembolic event (acute myocardial infarction and acute ischemia of right lower limb, respectively) presented about one month before diagnosis of leukemia. In the other 2 patients (cases 3 and 4), deep venous thromboembolism was concomitant with the diagnosis of leukemia. One patient (case 4), who could not initiate chemotherapy for severe concomitant renal failure, died few days after diagnosis. The other patients recovered from the acute event and upon diagnosis of leukemia were promptly treated with standard polychemotherapy which allowed to obtain complete hematological remission associated with complete resolution of the thromboembolic event. The clinical course after chemotherapeutic treatment of the patients outlines the importance and life saving role of early chemotherapy even under adverse circumstances. The pathogenesis of thromboembolic disease in hematological malignancies is complex and multifactorial: tumor cell-derived procoagulant, fibrinolytic or proteolytic factors and inflammatory cytokines affect clotting activation. Other important factors include infectious complications and hyperleukocytosis. However, large vessel thrombosis is a very rare clinical presentation. Our report of severe thromboembolic events at presentation in AML with mutated NPM1 suggests some still unidentified biological features of this leukemia which we are currently investigating. Disclosures: No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-11-16
    Description: We recently found that about one-third of adult AML (60% of all AML with normal karyotype) display aberrant cytoplasmic expression of nucleophosmin (NPM) which is due to mutations occurring at the exon-12 of NPM gene (Falini B, et al., Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype..N Engl J Med2005; 352: 254–266). Hereby, we clarify the molecular mechanism underlying cytoplasmic NPM accumulation that yet remained to be elucidated. AML-associated mutated NPM alleles encode abnormal NPM proteins (25 mutants so far identified) which have acquired at the C-terminus a nuclear export signal-(NES) motif and lost at least one of tryptophan residues 288 and 290 which determine nucleolar localization. Both alterations are crucial for mutant NPM export from nucleus to cytoplasm. In fact, the cytoplasmic NPM accumulation is blocked by leptomycin-B and ratjadones which are specific inhibitors of exportin-1/CRM1, and by re-insertion of tryptophan residues 288 and 290, which respectively relocate NPM mutants in the nucleoplasm and nucleoli. Thus, for cytoplasmic accumulation of NPM to occur, the NES motif and tryptophan mutations must act in concert. Possibly, when NPM mutans enter the nucleus by virtue of their nuclear localization signals (NLS), their capability to bind nucleoli must be hindered at least partially to become a CRM-1 target. Specific antibodies anti-NPM mutant proteins showed that the mutants localized exclusively in the cytoplasm and recruited in that site the wild-type NPM protein which is physiologically located in the nucleoli. These findings suggest that the NPM mutants may interfere with the functions of wild-type NPM and possibly contribute to leukemogenesis. Immunostaining of 393 AML cases using anti-NPM monoclonal antibodies predicted the presence of NPM exon-12 mutations in all 191 NPM-cytoplasmic positive cases. This finding is consistent with the fact that, despite genomic heterogeneity, all NPM mutants contain a NES motif which, in the presence of altered tryptophans, promotes their rapid export from the nucleus to the cytoplasm. The immunohistochemical test is diagnostically relevant since it can be used as simple first-step procedure in molecular-genetic characterization of AML and as a surrogate for mutational analysis in selected cases. These findings are also clinically relevant since cytoplasmic NPM/NPM mutations are predictors of good response to induction therapy and favourable prognosis in AML with a normal karyotype.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-11-20
    Description: Abstract 480 Acute myeloid leukemia with mutated NPM1 gene and cytoplasmic nucleophosmin (NPMc+ AML) [Falini B et al, NEJM 2005;352:254-266] is a new entity of WHO classification that shows distinctive biological and clinical features [Falini B et al, Blood 2007;109:874-885] which include negativity for CD34 antigen expression at both immunohistochemistry and gene expression profiling. Flow cytometric analysis shows that, in most NPM1-mutated AML, percentages of CD34+ cells are in the low range (〈 5-10%). Detection of NPM1 mutations by molecular techniques and/or immunohistochemistry and Western Blot analysis with specific antibodies provides an important tool for tracking the genetic lesion in leukemic cells at different hierarchical stage. We previously reported involvement by NPM1 gene mutation of the CD34+ cell fraction isolated from patients with NPM1-mutated AML, and, in one case, the involvement, in particular, of the early progenitor CD34+/CD38- [Martelli MP et al, Blood (ASH Annual Meeting Abstracts) 2008;112:307]. Here we expand and confirm our previous observation in 5 cases of CD34-negative NPM1-mutated AML. CD34+/CD38- cells were isolated by either FACS (3 cases, purity 〉98%) or MACS-sorting (2 cases, purity 〉92%) and analyzed by molecular analysis and Western Blot with a specific anti-NPM1 mutant antibody, respectively. The presence of either NPM1 gene mutation or mutant protein was demonstrated in all samples analyzed proving the CD34+/CD38- cells belong to the leukemic clone. This cell subpopulation displayed also immunophenotypic features classically associated to leukemic stem cells (LSCs) (CD123+/CD33+/CD90-) in all (16/16) samples analyzed, suggesting they might actually represent the LSCs in NPM1-mutated AML. Indeed, CD34+ cell fraction isolated from NPM1-mutated AML was able to generate leukemia in immunocompromised mice resembling the original patient's disease. However, there is experimental evidence that, at least in some CD34-negative AML, also the CD34- population may contain LSCs. Whether the CD34- cell compartment in NPM1-mutated AML is also able to engraft and outgrow into leukemia in mice remains to be clarified. For this purpose, we assessed the engraftment ability of CD34- cells from 5 NPM1-mutated AML patients. No engraftment was observed in one case. Interestingly, in three patients with myelomonocytic (M4, 2 cases) and myelocytic (M2, 1 case) AML, the CD34- fraction resulted into marrow engraftment by human CD45+/CD33+ myeloid cells that, at morphological and immunohistological grounds, consisted of a mixed population of macrophage cells expressing the CD68 (PG-M1) antigen and mature looking myeloperoxidase (MPO)-positive cells. This pattern possibly reflects short-term engraftment by leukemic cells devoid of self-renewal potential that differentiated into mature elements. However, the neoplastic nature of engrafted cells could be established with certainty only in one case by western blotting detection of NPM1 mutant protein. Immunohistochemistry could not help in these cases to establish the leukemic nature of human cells since terminally differentiated leukemic cells in NPM1-mutated AML show nucleus-restricted NPM1 positivity. In contrast, the pure CD34+ fraction (availabel for comparison in one of these three cases) engrafted as AML with clear blastic morphology and cytoplasmic dislocation of nucleophosmin. In a fourth patient, the highly purified CD34- fraction from relapsed NPM1-mutated AML engrafted in mice with a typical AML picture. These preliminary findings suggest that in general the CD34- fraction from NPM1-mutated AML may have more limited engraftment potential than the CD34+ fraction. Further studies are ongoing to address this issue. Disclosures: Falini: Xenomics: Patents & Royalties.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1999-11-15
    Description: To evaluate the efficacy of a combined modality treatment (MACOP-B plus mediastinal radiotherapy) and the advantages of Gallium-67-citrate single-photon emission (67GaSPECT) over computed tomography (CT) for restaging in patients with primary mediastinal large B-cell lymphoma (PMLBCL) with sclerosis. Between 1989 and 1998, 50 previously untreated patients with PMLBCL with sclerosis (70% with bulky mass) were treated with MACOP-B regimen plus mediastinal radiotherapy. The radiologic clinical stage with evaluation of tumor size included CT and 67GaSPECT at diagnosis, after chemotherapy, and after radiotherapy. Forty-three patients (86%) achieved a complete response and 7 were nonresponders to treatment. For the imaging evaluation, only 47 patients were evaluable because 3 had disease progression during chemotherapy. After treatment, 3/5 (60%) patients with positive 67GaSPECT and negative CT scan relapsed, as against 0/21 (0%) with negative 67GaSPECT and CT scan. Twenty-one patients had a positive CT scan: of these, the 4 with positive 67GaSPECT all progressed, whereas there were no relapses among the 17 with negative 67GaSPECT. After radiotherapy, there was a decrease of positive CT (from 33 to 21 cases) and of positive 67GaSPECT (from 31 to 9 cases). Relapse-free survival rate was 93% at 96 months (median 39 months). In patients with PMLBCL with sclerosis, MACOP-B plus radiation therapy is a very useful first-line treatment and radiation therapy may play an important role. As regards restaging, 67GaSPECT should be considered the imaging technique of choice at least in patients who show CT positivity.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2005-11-16
    Description: Wild-type nucleophosmin (NPM) is a multifunctional protein shuttling between the nucleus and the cytoplasm. Chromosomal rearrangements leading to NPM fusion proteins occur in leukemias and lymphomas (e.g. with partners RARA, ALK). Recently, Falini et al. reported that 60% of acute myeloid leukemia (AML) patients with normal karyotype carry mutations at exon-12 of the NPM gene. This results in frame shifts that lead to alterations of the C-terminus of NPM resulting in the aberrant cytoplasmic localization of the mutated protein (NPMc+) (1). The effects of a mutationally altered protein on cellular functions like proliferation, differentiation or apoptosis, have often been revealed using immortalized cell lines that carry the mutation in question. Therefore, we screened a panel of 79 myeloid leukemia cell lines for presence of mutations - 4 bp insertions - at the exon-12 of the NPM gene. We performed polymerase chain reaction (PCR) analysis with fluorescent dye-labeled primers. For fragment size determination, the PCR products were mixed with dye-labeled size standards and separated by capillary electrophoresis. OCI-AML3 was the only cell line that expressed a signal in addition to and 4 bp larger than the wild-type NPM signal. Sequencing of the cloned NPM-mutated PCR product showed TCTG duplication at positions 956–959 of exon-12. This mutation was heterozygous and corresponded to the type that occurs in 77% of primary NPMc+ AMLs. OCI-AML3 cells have a hyperdiploid karyotype with 48(45–50)X/XY, +1, +5, +8, der(1)t(1;18)(p11;q11), i(5p),del(13)(q13q21), dup(17)(q21q25); sideline with r(Y)x1-2 and show the following immunoprofile: CD3−, CD4+, CD7−, CD8−, CD10−, CD13+, CD14−, CD15+, CD19−, CD30−, CD33−, CD34−, CD41+, CD42b−, CD68+, CD235a+, HLA-DR-. Especially the presence of myeloid markers and absence of CD34 is typical for NPMc+ cells (1). Furthermore, immunostaining with anti-NPM antibodies confirmed that the OCI-AML3 cells, like primary NPMc+ AML and in contrast to NPM wild-type cells, show cytoplasmic expression of NPM. Functional studies showed that the altered nucleo-cytoplasmic transport of NPM was nuclear export signalling-dependent and could be blocked by using the specific CRM1/exportin-1 inhibitor leptomycin B. In conclusion, cell line OCI-AML3 promises to be an important tool for studying the biological properties and response to new drugs of NPMc+ AML.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...