ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 385 (1997), S. 804-807 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Simulations were conducted using a coupled ocean-atmosphere-sea-ice general circulation model (National Center for Atmospheric Research GENESIS Global Climate Model, Version 1.02)8. GENESIS includes an atmospheric model, a mixed-layer ocean model with prescribed ocean heat transport, multi-layer ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-03-05
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-03-25
    Description: In the future, Arctic warming and the melting of polar glaciers will be considerable, but the magnitude of both is uncertain. We used a global climate model, a dynamic ice sheet model, and paleoclimatic data to evaluate Northern Hemisphere high-latitude warming and its impact on Arctic icefields during the Last Interglaciation. Our simulated climate matches paleoclimatic observations of past warming, and the combination of physically based climate and ice-sheet modeling with ice-core constraints indicate that the Greenland Ice Sheet and other circum-Arctic ice fields likely contributed 2.2 to 3.4 meters of sea-level rise during the Last Interglaciation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Otto-Bliesner, Bette L -- Marshall, Shawn J -- Overpeck, Jonathan T -- Miller, Gifford H -- Hu, Aixue -- New York, N.Y. -- Science. 2006 Mar 24;311(5768):1751-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Climate and Global Dynamics Division, National Center for Atmospheric Research (NCAR), Boulder, CO 80305, USA. ottobli@ucar.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16556838" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-03-25
    Description: Sea-level rise from melting of polar ice sheets is one of the largest potential threats of future climate change. Polar warming by the year 2100 may reach levels similar to those of 130,000 to 127,000 years ago that were associated with sea levels several meters above modern levels; both the Greenland Ice Sheet and portions of the Antarctic Ice Sheet may be vulnerable. The record of past ice-sheet melting indicates that the rate of future melting and related sea-level rise could be faster than widely thought.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Overpeck, Jonathan T -- Otto-Bliesner, Bette L -- Miller, Gifford H -- Muhs, Daniel R -- Alley, Richard B -- Kiehl, Jeffrey T -- New York, N.Y. -- Science. 2006 Mar 24;311(5768):1747-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for the Study of Planet Earth, Department of Geosciences, and Department of Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA. jto@u.arizona.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16556837" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-07-18
    Description: We conducted the first synchronously coupled atmosphere-ocean general circulation model simulation from the Last Glacial Maximum to the Bolling-Allerod (BA) warming. Our model reproduces several major features of the deglacial climate evolution, suggesting a good agreement in climate sensitivity between the model and observations. In particular, our model simulates the abrupt BA warming as a transient response of the Atlantic meridional overturning circulation (AMOC) to a sudden termination of freshwater discharge to the North Atlantic before the BA. In contrast to previous mechanisms that invoke AMOC multiple equilibrium and Southern Hemisphere climate forcing, we propose that the BA transition is caused by the superposition of climatic responses to the transient CO(2) forcing, the AMOC recovery from Heinrich Event 1, and an AMOC overshoot.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Z -- Otto-Bliesner, B L -- He, F -- Brady, E C -- Tomas, R -- Clark, P U -- Carlson, A E -- Lynch-Stieglitz, J -- Curry, W -- Brook, E -- Erickson, D -- Jacob, R -- Kutzbach, J -- Cheng, J -- New York, N.Y. -- Science. 2009 Jul 17;325(5938):310-4. doi: 10.1126/science.1171041.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Laboratory of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing, 210044, China. zliu3@wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19608916" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-09-05
    Description: The temperature history of the first millennium C.E. is sparsely documented, especially in the Arctic. We present a synthesis of decadally resolved proxy temperature records from poleward of 60 degrees N covering the past 2000 years, which indicates that a pervasive cooling in progress 2000 years ago continued through the Middle Ages and into the Little Ice Age. A 2000-year transient climate simulation with the Community Climate System Model shows the same temperature sensitivity to changes in insolation as does our proxy reconstruction, supporting the inference that this long-term trend was caused by the steady orbitally driven reduction in summer insolation. The cooling trend was reversed during the 20th century, with four of the five warmest decades of our 2000-year-long reconstruction occurring between 1950 and 2000.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaufman, Darrell S -- Schneider, David P -- McKay, Nicholas P -- Ammann, Caspar M -- Bradley, Raymond S -- Briffa, Keith R -- Miller, Gifford H -- Otto-Bliesner, Bette L -- Overpeck, Jonathan T -- Vinther, Bo M -- Arctic Lakes 2k Project Members -- New York, N.Y. -- Science. 2009 Sep 4;325(5945):1236-9. doi: 10.1126/science.1173983.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ 86011, USA. darrell.kaufman@nau.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19729653" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-06-01
    Description: The climate sensitivity of the Community Climate System Model version 3 (CCSM3) is studied for two past climate forcings, the Last Glacial Maximum (LGM) and the mid-Holocene. The LGM, approximately 21 000 yr ago, is a glacial period with large changes in the greenhouse gases, sea level, and ice sheets. The mid-Holocene, approximately 6000 yr ago, occurred during the current interglacial with primary changes in the seasonal solar irradiance. The LGM CCSM3 simulation has a global cooling of 4.5°C compared to preindustrial (PI) conditions with amplification of this cooling at high latitudes and over the continental ice sheets present at LGM. Tropical sea surface temperature (SST) cools by 1.7°C and tropical land temperature cools by 2.6°C on average. Simulations with the CCSM3 slab ocean model suggest that about half of the global cooling is explained by the reduced LGM concentration of atmospheric CO2 (∼50% of present-day concentrations). There is an increase in the Antarctic Circumpolar Current and Antarctic Bottom Water formation, and with increased ocean stratification, somewhat weaker and much shallower North Atlantic Deep Water. The mid-Holocene CCSM3 simulation has a global, annual cooling of less than 0.1°C compared to the PI simulation. Much larger and significant changes occur regionally and seasonally, including a more intense northern African summer monsoon, reduced Arctic sea ice in all months, and weaker ENSO variability.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-05-15
    Description: Responses of the thermohaline circulation (THC) to freshwater forcing (hosing) in the subpolar North Atlantic Ocean under present-day and the last glacial maximum (LGM) conditions are investigated using the National Center for Atmospheric Research Community Climate System Model versions 2 and 3. Three sets of simulations are analyzed, with each set including a control run and a freshwater hosing run. The first two sets are under present-day conditions with an open and closed Bering Strait. The third one is under LGM conditions, which has a closed Bering Strait. Results show that the THC nearly collapses in all three hosing runs when the freshwater forcing is turned on. The full recovery of the THC, however, is at least a century earlier in the open Bering Strait run than the closed Bering Strait and LGM runs. This is because the excessive freshwater is diverged almost equally toward north and south from the subpolar North Atlantic when the Bering Strait is open. A significant portion of the freshwater flowing northward into the Arctic exits into the North Pacific via a reversed Bering Strait Throughflow, which accelerates the THC recovery. When the Bering Strait is closed, this Arctic to Pacific transport is absent and freshwater can only be removed through the southern end of the North Atlantic. Together with the surface freshwater excess due to precipitation, evaporation, river runoff, and melting ice in the closed Bering Strait experiments after the hosing, the removal of the excessive freshwater takes longer, and this slows the recovery of the THC. Although the background conditions are quite different between the present-day closed Bering Strait run and the LGM run, the THC responds to the freshwater forcing added in the North Atlantic in a very similar manner.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-06-01
    Description: Preindustrial (PI) simulations of the Community Climate System Model version 3 (CCSM3) at two resolutions, a moderate and a low resolution, are described and compared to the standard controls for present-day (PD) simulations. Because of computational efficiency, the moderate- and low-resolution versions of CCSM3 may be appropriate for climate change studies requiring simulations of the order of hundreds to thousands of years. The PI simulations provide the basis for comparison for proxy records that represent average late Holocene conditions. When forced with PI trace gases, aerosols, and solar irradiance estimates, both resolutions have a global cooling of 1.2°–1.3°C, increased sea ice in both hemispheres, and less precipitation near the equator and at midlatitudes as compared to simulations using PD forcing. The response to PI forcings differs in the two resolutions for North Atlantic meridional overturning circulation (MOC), the Antarctic Circumpolar Current (ACC), and ENSO. The moderate-resolution CCSM3 has enhanced ACC, North Atlantic MOC, and tropical Pacific ENSO variability for PI forcings as compared to PD. The low-resolution CCSM3 with more extensive sea ice and colder climate at high northern latitudes in the PD simulation shows less sensitivity of the North Atlantic MOC to PI forcing. ENSO variability and the strength of the ACC do not increase with PI forcing in the low-resolution CCSM3.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-10-01
    Description: Three coupled atmosphere–ocean general circulation model (AOGCM) simulations of the Last Glacial Maximum (LGM: about 21 000 yr before present), conducted under the protocol of the second phase of the Paleoclimate Modelling Intercomparison Project (PMIP2), have been analyzed from a viewpoint of large-scale energy and freshwater balance. Atmospheric latent heat (LH) transport decreases at most latitudes due to reduced water vapor content in the lower troposphere, and dry static energy (DSE) transport in northern midlatitudes increases and changes the intensity contrast between the Pacific and Atlantic regions due to enhanced stationary waves over the North American ice sheets. In low latitudes, even with an intensified Hadley circulation in the Northern Hemisphere (NH), reduced DSE transport by the mean zonal circulation as well as a reduced equatorward LH transport is observed. The oceanic heat transport at NH midlatitudes increases owing to intensified subpolar gyres, and the Atlantic heat transport at low latitudes increases in all models whether or not meridional overturning circulation (MOC) intensifies. As a result, total poleward energy transport at the LGM increases in NH mid- and low latitudes in all models. Oceanic freshwater transport decreases, compensating for the response of the atmospheric water vapor transport. These responses in the atmosphere and ocean make the northern North Atlantic Ocean cold and relatively fresh, and the Southern Ocean relatively warm and saline. This is a common and robust feature in all models. The resultant ocean densities and ocean MOC response, however, show model dependency.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...