ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-03-02
    Description: We studied the anatomy of the fault system where the 2009 L’Aquila earthquake (MW 6.1) nucleated by means of ~64 k high-precision earthquake locations spanning 1 year. Data were analyzed by combining an automatic picking procedure for P and S waves, together with cross-correlation and double-difference location methods reaching a completeness magnitude for the catalogue equal to 0.7 including 425 clusters of similar earthquakes. The fault system is composed by two major faults: the high-angle L’Aquila fault and the listric Campotosto fault, both located in the first 10 km of the upper crust. We detect an extraordinary degree of detail in the anatomy of the single fault segments resembling the degree of complexity observed by field geologists on fault outcrops. We observe multiple antithetic and synthetic fault segments tens of meters long in both the hanging wall and footwall along with bends and cross fault intersections along the main fault and fault splays. The width of the L’Aquila fault zone varies along strike from 0.3 km where the fault exhibits the simplest geometry and experienced peaks in the slip distribution, up to 1.5 km at the fault tips with an increase in the geometrical complexity. These characteristics, similar to damage zone properties of natural faults, underline the key role of aftershocks in fault growth and co-seismic rupture propagation processes. Additionally, we interpret the persistent nucleation of similar events at the seismicity cutoff depth as the presence of a rheological (i.e., creeping) discontinuity explaining how normal faults detach at depth.
    Description: Published
    Description: 1-21
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: open
    Keywords: seismic sequences; normal faults; high-resolution earthquake catalogues ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-26
    Description: Using template waveforms from aftershocks of the Wenchuan earthquake (12 May 2008, M s  7.9) listed in a global bulletin and continuous data from eight regional stations, we detected more than 6000 additional events in the mainshock source region from 1 May to 12 August 2008. These new detections obey Omori’s law, extend the magnitude of completeness downward by 1.1 magnitude units, and lead to a more than fivefold increase in number of known aftershocks compared with the global bulletins published by the International Data Centre and the International Seismological Centre. Moreover, we detected more M 〉2 events than were listed by the Sichuan Seismograph Network. Several clusters of these detections were then relocated using the double-difference method, yielding locations that reduced travel-time residuals by a factor of 32 compared with the initial bulletin locations. Our results suggest that using waveform correlation on a few regional stations can find aftershock events very effectively and locate them with precision.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018
    Description: 〈span〉〈div〉ABSTRACT〈/div〉Eleven small seismic events that occurred after the North Korean underground nuclear test (UNT) on 3 September 2017 have been reported. We detected three additional events not found using traditional methods by using a waveform‐matching technique. The magnitude of these fourteen shocks ranges from Mw 2.1 to 4.0. The first and largest of them, occurring about 8½ minutes after the nuclear explosion itself, has been identified by several authors as a cavity collapse. We analyzed the remaining 13 events, first by using regional 〈span〉P〈/span〉‐ and 〈span〉S〈/span〉‐wave spectral amplitude ratios observed at station MDJ (Mudanjiang, China), applying Mahalanobis methods to identify them. Applying a previously established linear discriminant function for the region to observed 〈span〉P/S〈/span〉 spectral ratios, 12 of the events are classified as earthquakes, and 1 other, the first of a doublet pair on 9 December 2017, appeared to be an explosion. However, waveform similarity of this event with its doublet pair, and application of the MDJ discriminant function to data from two other regional stations suggests that it, too, is likely to be an earthquake. It appears that damage caused by strong ground motion from the large UNT of 3 September 2017 has led to slow adjustments in the surrounding region entailing stress relief via aftershocks. Additional small seismic events (earthquakes) may be expected in the region.〈/span〉
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-02-03
    Description: We assess seismological evidence bearing on claims that North Korea conducted a small nuclear test on 12 May 2010 in the vicinity of known underground nuclear tests (UNTs) in 2006, 2009, 2013, and 2016. First, we use Lg -wave cross correlation and more traditional methods to locate the 2010 event between about 4 and 10 km southwest of the 2009 test. Second, we compare the relative sizes of regional P and S waves, using stations within 400 km of the known North Korean nuclear tests, to assess the nature of the event. We measured P / S ratios at different frequencies, at first using data from the open station MDJ in northeast China, for training sets of earthquakes and of explosions. We developed a linear discriminant function (LDF) that, in application to P / S measured at MDJ, is most effective in separating the earthquake and explosion populations. MDJ lacks usable data for the event of interest, but we obtained regional data from stations of the nearby Dongbei Broadband Seismographic Network (DBSN) for the 12 May 2010 event and for nearby UNTs conducted in 2006 and 2009. When our LDF is applied to DBSN data, and to data from stations SMT and NE3C in China, the LDF values measured from P / S ratios from known explosions are explosion-like; but for the 12 May 2010 event, the LDF values are earthquake-like for frequencies between 6 and 12 Hz. Our method for characterizing earthquakes and explosions on the basis of their regional signals can be widely applied. Measurements of P / S based on the three-component waveform data provide better discrimination power than do those based on vertical-component data alone. Electronic Supplement: Tutorial material on the Mahalanobis distance-squared measure, three-component linear discriminant function (LDF) analysis, tables of measurements of the log 10 P / S spectral ratios obtained from waveforms recorded at station MDJ for the two training sets and three-component discrimination analysis, and figures of log ( P / S ) values measured at 8 Hz from vertical-component waveforms at station MDJ for two training sets and probability distributions for D .
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2005-12-01
    Description: We processed the complete digital seismogram database for northern California to measure accurate differential travel times for correlated earthquakes observed at common stations. Correlated earthquakes are earthquakes that occur within a few kilometers of one another and have similar focal mechanisms, thus generating similar waveforms, allowing measurements to be made via cross-correlation analysis. The waveform database was obtained from the Northern California Earthquake Data Center and includes about 15 million seismograms from 225,000 local earthquakes between 1984 and 2003. A total of 26 billion cross-correlation measurements were performed on a 32-node (64 processor) Linux cluster, using improved analysis tools. All event pairs with separation distances of 5 km or less were processed at all stations that recorded the pair. We computed a total of about 1.7 billion P-wave differential times from pairs of waveforms that had cross-correlation coefficients (CC) of 0.6 or larger. The P-wave differential times are often on the order of a factor of ten to a hundred times more accurate than those obtained from routinely picked phase onsets. 1.2 billion S-wave differential times were measured with CC〉 or =0.6, a phase not routinely picked at the Northern California Seismic Network because of the noise level of remaining P coda. We found that approximately 95% of the seismicity includes events that have cross-correlation coefficients of CC〉 or =0.7 with at least one other event recorded at four or more stations. At some stations more than 40% of the recorded events are similar at the CC〉 or =0.9 level, indicating the potential existence of large numbers of repeating earthquakes. Large numbers of correlated events occur in different tectonic regions, including the San Andreas Fault, Long Valley caldera, Geysers geothermal field and Mendocino triple junction. Future research using these data may substantially improve earthquake locations and add insight into the velocity structure in the crust.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-06-01
    Description: Statistical analyses were conducted on the capability of correlation detectors for similar events. Semiempirical synthetic runs took a 50-sec window on an Lg wave recorded at 750-km distance filtered from 1 to 3 Hz and embedded it 300,000 times in real continuous background seismic noise. The noise was selected for 36 days spread throughout the year to capture diurnal and seasonal variations. No screening for random, unknown signals in the noise was performed. A correlation detector has a 50% probability of detection with 1.5 false alarms per day for a signal-to-noise ratio (SNR) of 0.32, which corresponds to a full magnitude unit reduction in detection threshold over a standard short-term average/long-term average (STA/LTA) technique. A scaled cross-correlation coefficient performs slightly better with one false alarm per day and has fewer false triggers on unknown, random signals. Summing the cross-correlation traces together for all three components enhances the detection signal similar to beamforming. A correlation detector summing the correlation traces for the three components together has a 96% probability of detection with zero false alarms in 36 days for an SNR of 0.32. The significant result of this study is that a correlation detector has more than an order of magnitude improvement in detection threshold for similar events with acceptably low false alarm rates to be used in practice.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-12-16
    Description: The 2013 Aigion earthquake swarm that took place in the west part of Corinth Gulf is investigated for revealing faulting and seismicity properties of the activated area. The activity started on May 21 and was appreciably intense in the next 3 months. The recordings of the Hellenic Unified Seismological Network (HUSN), which is adequately dense around the affected area, were used to accurately locate 1501 events. The double difference (hypoDD) technique was employed for the manually picked P and S phases along with differential times derived from waveform cross-correlation for improving location accuracy. The activated area with dimensions 6 × 2 km is located approximately 5 km SE of Aigion. Focal mechanisms of 77 events with M ≥ 2.0 were determined from P wave first motions and used for the geometry identification of the ruptured segments. Spatio-temporal distribution of earthquakes revealed an eastward and westward hypocentral migration from the starting point suggesting the division of the seismic swarm into four major clusters. The hypocentral migration was corroborated by the Coulomb stress change calculation, indicating that four fault segments involved in the rupture process successively failed by stress change encouragement. Examination of fluid flow brought out that it cannot be unambiguously considered as the driving mechanism for the successive failures. © 2015, Springer Science+Business Media Dordrecht.
    Print ISSN: 1383-4649
    Electronic ISSN: 1573-157X
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-01-01
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...