ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (4)
Collection
Years
Year
  • 1
    Publication Date: 2011-08-21
    Description: Magma degassing processes are commonly elucidated by studies of melt inclusions in erupted phenocrysts and measurements of gas discharge at volcanic vents, allied to experimentally constrained models of volatile solubility. Here we develop an alternative experimental approach aimed at directly simulating decompression-driven, closed-system degassing of basaltic magma in equilibrium with an H–C–O–S–Cl fluid under oxidized conditions (f O2 of 1·0–2·4 log units above the Ni–NiO buffer). Synthetic experimental starting materials were based on basaltic magmas erupted at the persistently degassing volcanoes of Stromboli (Italy) and Masaya (Nicaragua) with an initial volatile inventory matched to the most undegassed melt inclusions from each volcano. Experiments were run at 25–400 MPa under super-liquidus conditions (1150°C). Run product glasses and starting materials were analysed by electron microprobe, secondary ion mass spectrometry, Fourier transform infrared spectroscopy, Karl-Fischer titration, Fe 2+ /Fe 3+ colorimetry and CS analyser. The composition of the exsolved vapour in each run was determined by mass balance. Our results show that H 2 O/CO 2 ratios increase systematically with decreasing pressure, whereas CO 2 /S ratios attain a maximum at pressures of 100–300 MPa. S is preferentially released over Cl at low pressures, leading to a sharp increase in vapour S/Cl ratios and a sharp drop in the S/Cl ratios of glasses. This accords with published measurements of volatile concentrations in melt inclusion and groundmass glasses at Stromboli (and Etna). Experiments with different S abundances show that the H 2 O and CO 2 contents of the melt at fluid saturation are not affected. The CO 2 solubility in experiments using both sets of starting materials is well matched to calculated solubilities using published models. Models consistently overestimate H 2 O solubilities for the Stromboli-like composition, leading to calculated vapour compositions that are more CO 2 -rich and calculated degassing trajectories that are more strongly curved than observed in experiments. The difference is less acute for the Masaya-like composition, emphasizing the important compositional dependence of solubility and melt–vapour partitioning. Our novel experimental method can be readily extended to other bulk compositions.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-08-01
    Print ISSN: 0377-0273
    Electronic ISSN: 1872-6097
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-07-28
    Description: We present an experimental study of a buoyancy-driven, low-Reynolds-number (Re 〈 1) exchange flow of two Newtonian fluids in a vertical cylindrical pipe (length 1 m and diameter 38.4 mm) connecting two fluid reservoirs. The denser, more viscous fluid was golden syrup and the less dense, less viscous fluid was a golden syrup-water solution; the ratio of the viscosities of the two fluids (Î) ranged from 2 to 1180. Flows were initiated by removing a bung in the base of the upper reservoir or sliding out a gate positioned at the top, middle or bottom of the pipe. We observe the flows over long time durations (up to 356 h), and define the development of the flow with reference to a non-dimensional time (Ï.,). The initial transient development of the flow was dependent on which of the two fluids initially filled the pipe, but this did not systematically affect the flow regime observed at Ï., â 1. Two distinct flow regimes were observed: axisymmetric core-annular flow (CAF), in which the less viscous fluid occupies a cylindrical core and the denser fluid flows downwards in an annulus, and side-by-side (SBS) flow where both fluids are in contact with the pipe and there is a single interface between them. CAF formed at Π⥠75 and SBS flow at Î â 117. In several experiments, for 5 â Î â 59, a slowly developing transitional SBS (TSBS) flow was observed where SBS flow and CAF occurred simultaneously with SBS in the lower portion of the pipe; SBS existed throughout most of the pipe and in one case grew with time to entirely fill the pipe. Velocity profiles determined by tracking tracer particles show that the observed CAFs are adequately described by the formulation of Huppert & Hallworth (J. Fluid Mech., vol. 578, 2007, pp. 95-112). Experimental SBS velocity profiles are not well produced by the formulation of Kerswell (J. Fluid Mech., 10.1017/jfm.2011.190), possibly because the latter is restricted to flows whose cross-section has an interface of constant curvature. Despite the variations in flow regime, volume fluxes can be described by a power-law function of Î, Q1 = 0.059 Îâ̂'0.74. A comparison of experimental data with the theoretical approaches of Huppert Hallworth (2007) and Kerswell (2011) indicates that fluids are not arranged in the regime that maximises volume flux (e.g. SBS or CAF), nor do they adopt the geometry that maximises volume flux within that particular regime. © Cambridge University Press 2011.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-05-12
    Print ISSN: 0258-8900
    Electronic ISSN: 1432-0819
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...