ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Under Instrument Flight Rules, pilots are not permitted to make changes to their approved trajectory without first receiving permission from Air Traffic Control (ATC). Referred to as "user requests," trajectory change requests from aircrews are often denied or deferred by controllers because they have awareness of traffic and airspace constraints not currently available to flight crews. With the introduction of Automatic Dependent Surveillance-Broadcast (ADS-B) and other information services, a rich traffic, weather, and airspace information environment is becoming available on the flight deck. Automation developed by NASA uses this information to aid flight crews in the identification and formulation of optimal conflict-free trajectory requests. The concept of Traffic Aware Strategic Aircrew Requests (TASAR) combines ADS-B and airborne automation to enable user-optimal in-flight trajectory replanning and to increase the likelihood of ATC approval for the resulting trajectory change request. TASAR may improve flight efficiency or other user-desired attributes of the flight while not impacting and potentially benefiting the air traffic controller. This paper describes the TASAR concept of operations, its enabling automation technology which is currently under development, and NASA s plans for concept assessment and maturation.
    Keywords: Air Transportation and Safety
    Type: NF1676L-14129 , 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference; Sep 17, 2012 - Sep 19, 2012; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: This paper presents the results of a computer simulation of the NASA Autonomous Flight Rules (AFR) concept for airborne self-separation in airspace shared with conventional Instrument Flight Rules (IFR) traffic. This study was designed to determine the impact of varying levels of intent information from IFR aircraft on the performance of AFR conflict detection and resolution. The study used Automatic Dependent Surveillance-Broadcast (ADS-B) to supply IFR intent, but other methods such as an uplink from a ground-based System Wide Information Management (SWIM) network could alternatively supply this information. The independent variables of the study consist of the number of ADS-B trajectory change reports broadcast by IFR aircraft and the time interval between those reports. The conflict detection and resolution metrics include: the number of conflicts and losses of separation, the average conflict warning time, and the amount of time spent in strategic vs. tactical flight modes (i.e., whether the autoflight system was decoupled from the planned route in the Flight Management System in order to respond to a short-notice traffic conflict). The results show a measurable benefit of broadcasting IFR intent vs. relying on state-only broadcasts. The results of this study will inform ongoing separation assurance research and FAA NextGen design decisions for the sharing of trajectory intent information in the National Airspace System.
    Keywords: Air Transportation and Safety
    Type: NF1676L-14154 , 2012 Integrated Communications Navigation and Surveillance (ICNS) Conference; Apr 24, 2012 - Apr 26, 2012; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The growing demand for air travel is increasing the need for mitigating air traffic congestion and complexity problems, which are already at high levels. At the same time new surveillance, navigation, and communication technologies are enabling major transformations in the air traffic management system, including net-based information sharing and collaboration, performance-based access to airspace resources, and trajectory-based rather than clearance-based operations. The new system will feature different schemes for allocating tasks and responsibilities between the ground and airborne agents and between the human and automation, with potential capacity and cost benefits. Therefore, complexity management requires new metrics and methods that can support these new schemes. This paper presents metrics and methods for preserving trajectory flexibility that have been proposed to support a trajectory-based approach for complexity management by airborne or ground-based systems. It presents extensions to these metrics as well as to the initial research conducted to investigate the hypothesis that using these metrics to guide user and service provider actions will naturally mitigate traffic complexity. The analysis showed promising results in that: (1) Trajectory flexibility preservation mitigated traffic complexity as indicated by inducing self-organization in the traffic patterns and lowering traffic complexity indicators such as dynamic density and traffic entropy. (2)Trajectory flexibility preservation reduced the potential for secondary conflicts in separation assurance. (3) Trajectory flexibility metrics showed potential application to support user and service provider negotiations for minimizing the constraints imposed on trajectories without jeopardizing their objectives.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-12165 , 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference; Sep 20, 2011 - Sep 22, 2011; Virginia Beach, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The Autonomous Operations Planner (AOP), developed by NASA, is a flexible and powerful prototype of a flight-deck automation system to support self-separation of aircraft. The AOP incorporates a variety of algorithms to detect and resolve conflicts between the trajectories of its own aircraft and traffic aircraft while meeting route constraints such as required times of arrival and avoiding airspace hazards such as convective weather and restricted airspace. This integrated suite of algorithms provides flight crew support for strategic and tactical conflict resolutions and conflict-free trajectory planning while en route. The AOP has supported an extensive set of experiments covering various conditions and variations on the self-separation concept, yielding insight into the system s design and resolving various challenges encountered in the exploration of the concept. The design of the AOP will enable it to continue to evolve and support experimentation as the self-separation concept is refined.
    Keywords: Air Transportation and Safety
    Type: NF1676L-14147 , 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference; Sep 17, 2012 - Sep 19, 2012; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Self-separation is a concept of flight operations that aims to provide user benefits and increase airspace capacity by transferring traffic separation responsibility from ground-based controllers to the flight crew. Self-separation is enabled by cooperative airborne surveillance, such as that provided by the Automatic Dependent Surveillance-Broadcast (ADSB) system and airborne separation assistance technologies. This paper describes an assessment of the impact of ADS-B system performance on the performance of self-separation as a step towards establishing far-term ADS-B performance requirements. Specifically, the impacts of ADS-B surveillance range and interference limitations were analyzed under different traffic density levels. The analysis was performed using a batch simulation of aircraft performing self-separation assisted by NASA s Autonomous Operations Planner prototype flight-deck tool, in two-dimensional airspace. An aircraft detected conflicts within a look-ahead time of ten minutes and resolved them using strategic closed trajectories or tactical open maneuvers if the time to loss of separation was below a threshold. While a complex interaction was observed between the impacts of surveillance range and interference, as both factors are physically coupled, self-separation performance followed expected trends. An increase in surveillance range resulted in a decrease in the number of conflict detections, an increase in the average conflict detection lead time, and an increase in the percentage of conflict resolutions that were strategic. The majority of the benefit was observed when surveillance range was increased to a value corresponding to the conflict detection look-ahead time. The benefits were attenuated at higher interference levels. Increase in traffic density resulted in a significant increase in the number of conflict detections, as expected, but had no effect on the conflict detection lead time and the percentage of conflict resolutions that were strategic. With surveillance range corresponding to ADS-B minimum operational performance standards for Class A3 equipment and without background interference, a significant portion of conflict resolutions, 97 percent, were achieved in the preferred strategic mode. The majority of conflict resolutions, 71 percent, were strategic even with very high interference (over three times that expected in 2035).
    Keywords: Air Transportation and Safety
    Type: NF1676L-12303 , 2011 IEEE AIAA 30th Digital Avionics Systems Conference; Oct 16, 2011 - Oct 20, 2011; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Autonomous Flight Rules (AFR) are proposed as a new set of operating regulations in which aircraft navigate on tracks of their choice while self-separating from traffic and weather. AFR would exist alongside Instrument and Visual Flight Rules (IFR and VFR) as one of three available flight options for any appropriately trained and qualified operator with the necessary certified equipment. Historically, ground-based separation services evolved by necessity as aircraft began operating in the clouds and were unable to see each other. Today, technologies for global precision navigation, emerging airborne surveillance, and onboard computing enable traffic conflict management to be fully integrated with navigation procedures onboard the aircraft. By self-separating, aircraft can operate with more flexibility and fewer flight restrictions than are required when using ground-based separation. The AFR concept proposes a practical means in which self-separating aircraft could share the same airspace as IFR and VFR aircraft without disrupting the ongoing processes of Air Traffic Control. The paper discusses the context and motivation for implementing self-separation in US domestic airspace. It presents a historical perspective on separation, the proposed way forward in AFR, the rationale behind mixed operations, and the expected benefits of AFR for the airspace user community.
    Keywords: Air Transportation and Safety
    Type: NF1676L-12133 , 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference; Sep 20, 2011 - Sep 22, 2011; Virginia Beach, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: While en route, aircrews submit trajectory change requests to air traffic control (ATC) to better meet their objectives including reduced delays, reduced fuel burn, and passenger comfort. Aircrew requests are currently made with limited to no information on surrounding traffic. Consequently, these requests are uninformed about a key ATC objective, ensuring traffic separation, and therefore less likely to be accepted than requests informed by surrounding traffic and that avoids creating conflicts. This paper studies the benefits of providing aircrews with on-board decision support to generate optimized trajectory requests that are probed and cleared of known separation violations prior to issuing the request to ATC. These informed requests are referred to as traffic aware strategic aircrew requests (TASAR) and leverage traffic surveillance information available through Automatic Dependent Surveillance Broadcast (ADS-B) In capability. Preliminary fast-time simulation results show increased benefits with longer stage lengths since beneficial trajectory changes can be applied over a longer distance. Also, larger benefits were experienced between large hub airports as compared to other airport sizes. On average, an aircraft equipped with TASAR reduced its travel time by about one to four minutes per operation and fuel burn by about 50 to 550 lbs per operation depending on the objective of the aircrew (time, fuel, or weighted combination of time and fuel), class of airspace user, and aircraft type. These preliminary results are based on analysis of approximately one week of traffic in July 2012 and additional analysis is planned on a larger data set to confirm these initial findings.
    Keywords: Air Transportation and Safety
    Type: NF1676L-14148 , 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference; Sep 17, 2012 - Sep 19, 2012; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The Traffic Aware Planner (TAP) is an airborne advisory tool that generates optimized, traffic-avoiding routes to support the aircraft crew in making strategic reroute requests to Air Traffic Control (ATC). TAP is derived from a research-prototype self-separation tool, the Autonomous Operations Planner (AOP), in which optimized route modifications that avoid conflicts with traffic and weather, using waypoints at explicit latitudes and longitudes (a technique supported by self-separation concepts), are generated by maneuver patterns applied to the existing route. For use in current-day operations in which trajectory changes must be requested from ATC via voice communication, TAP produces optimized routes described by advisories that use only published waypoints prior to a reconnection waypoint on the existing route. We describe how the relevant algorithms of AOP have been modified to implement this requirement. The modifications include techniques for finding appropriate published waypoints in a maneuver pattern and a method for combining the genetic algorithm of AOP with an exhaustive search of certain types of advisory. We demonstrate methods to investigate the increased computation required by these techniques and to estimate other costs (measured in terms such as time to destination and fuel burned) that may be incurred when only published waypoints are used.
    Keywords: Air Transportation and Safety; Economics and Cost Analysis
    Type: NF1676L-15962 , AIAA Guidance, Navigation, and Control Conference; Aug 19, 2013 - Aug 22, 2013; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-27
    Description: The concept of Traffic Aware Strategic Aircrew Requests (TASAR) combines Automatic Dependent Surveillance Broadcast (ADS-B) IN and airborne automation to enable user-optimal in-flight trajectory replanning and to increase the likelihood of Air Traffic Control (ATC) approval for the resulting trajectory change request. TASAR is designed as a near-term application to improve flight efficiency or other user-desired attributes of the flight while not impacting and potentially benefiting ATC. Previous work has indicated the potential for significant benefits for each TASAR-equipped aircraft. This paper will discuss the approach to minimizing TASAR's cost for implementation and accelerating readiness for near-term implementation.
    Keywords: Aircraft Communications and Navigation
    Type: AIAA Paper 3013-4231 , NF1676L16072 , AIAA Aviation Technology, Integration, and Operations (ATIO) Conference; 12-14 Aug. 203; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: Autonomous Flight Rules (AFR) are proposed as a new set of operating regulations in which aircraft navigate on tracks of their choice while self-separating from traffic and weather. AFR would exist alongside Instrument and Visual Flight Rules (IFR and VFR) as one of three available flight options for any appropriately trained and qualified operator with the necessary certified equipment. Historically, ground-based separation services evolved by necessity as aircraft began operating in the clouds and were unable to see each other. Today, technologies for global navigation, airborne surveillance, and onboard computing enable the functions of traffic conflict management to be fully integrated with navigation procedures onboard the aircraft. By self-separating, aircraft can operate with more flexibility and fewer restrictions than are required when using ground-based separation. The AFR concept is described in detail and provides practical means by which self-separating aircraft could share the same airspace as IFR and VFR aircraft without disrupting the ongoing processes of Air Traffic Control.
    Keywords: Air Transportation and Safety
    Type: NASA/TP-2011-217174 , L-20058 , NF1676L-12830
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...