ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (5)
Collection
Language
Years
Year
  • 1
    Call number: AWI A13-19-92242
    Description / Table of Contents: Die Dynamik der Atmosphäre der Erde umfasst einen Bereich von mikrophysikalischer Turbulenz über konvektive Prozesse und Wolkenbildung bis zu planetaren Wellenmustern. Für Wettervorhersage und zur Betrachtung des Klimas über Jahrzehnte und Jahrhunderte ist diese Gegenstand der Modellierung mit numerischen Verfahren. Mit voranschreitender Entwicklung der Rechentechnik sind Neuentwicklungen der dynamischen Kerne von Klimamodellen, die mit der feiner werdenden Auflösung auch entsprechende Prozesse auflösen können, notwendig. Der dynamische Kern eines Modells besteht in der Umsetzung (Diskretisierung) der grundlegenden dynamischen Gleichungen für die Entwicklung von Masse, Energie und Impuls, so dass sie mit Computern numerisch gelöst werden können. Die vorliegende Arbeit untersucht die Eignung eines unstetigen Galerkin-Verfahrens niedriger Ordnung für atmosphärische Anwendungen. Diese Eignung für Gleichungen mit Wirkungen von externen Kräften wie Erdanziehungskraft und Corioliskraft ist aus der Theorie nicht selbstverständlich. Es werden nötige Anpassungen beschrieben, die das Verfahren stabilisieren, ohne sogenannte „slope limiter” einzusetzen. Für das unmodifizierte Verfahren wird belegt, dass es nicht geeignet ist, atmosphärische Gleichgewichte stabil darzustellen. Das entwickelte stabilisierte Modell reproduziert eine Reihe von Standard-Testfällen der atmosphärischen Dynamik mit Euler- und Flachwassergleichungen in einem weiten Bereich von räumlichen und zeitlichen Skalen. Die Lösung der thermischen Windgleichung entlang der mit den Isobaren identischen charakteristischen Kurven liefert atmosphärische Gleichgewichtszustände mit durch vorgegebenem Grundstrom einstellbarer Neigung zu(barotropen und baroklinen)Instabilitäten, die für die Entwicklung von Zyklonen wesentlich sind. Im Gegensatz zu früheren Arbeiten sind diese Zustände direkt im z-System(Höhe in Metern)definiert und müssen nicht aus Druckkoordinaten übertragen werden.Mit diesen Zuständen, sowohl als Referenzzustand, von dem lediglich die Abweichungen numerisch betrachtet werden, und insbesondere auch als Startzustand, der einer kleinen Störung unterliegt, werden verschiedene Studien der Simulation von barotroper und barokliner Instabilität durchgeführt. Hervorzuheben ist dabei die durch die Formulierung von Grundströmen mit einstellbarer Baroklinität ermöglichte simulationsgestützte Studie des Grades der baroklinen Instabilität verschiedener Wellenlängen in Abhängigkeit von statischer Stabilität und vertikalem Windgradient als Entsprechung zu Stabilitätskarten aus theoretischen Betrachtungen in der Literatu
    Type of Medium: Dissertations
    Pages: v, 160 Seiten , Illustrationen, Diagramme
    Language: German
    Note: Inhaltsverzeichnis: 1. Einleitung. - 2. Atmosphärische Gleichungssysteme. - 2.1. Zur Notation. - 2.2. Geometrie im β-Kanal. - 2.3. Gleichungen in Flussform. - 2.4. Euler-Gleichungen. - 2.4.1. Energiegleichung. - 2.4.2. Bewegungsgleichungen. - 2.4.3. Flussform des gesamten Gleichungssystems. - 2.4.4. Schallgeschwindigkeit. - 2.4.5. Druck und Energie. - 2.4.6. Energie als Erhaltungsvariable. - 2.5. Euler-Gleichungen mit Referenzfeld. - 2.6. Linearisierte Euler-Gleichungen. - 2.7. Flachwassergleichungen. - 2.8. Flachwasseräquivalente Dynamik mit Euler-Gleichungen. - 3. Unstetiges Galerkin-Verfahren. - 3.1. Räumliche Diskretisierung. - 3.1.1. Integralform und numerischer Fluss. - 3.1.2. Koeffizientendarstellung der Gleichungen. - 3.1.3. Koordinatentransformation mit Orographie. - 3.1.4. Quadratur. - 3.1.5. Basisfunktionen im Rechteckgitter. - 3.1.6. Diskretisierung von analytischen Anfangsbedingungen. - 3.2. Zeitliche Diskretisierung. - 3.2.1. Expliziter Zeitschritt. - 3.2.2. Semi-impliziter Zeitschritt. - 3.2.3. Skalierung von Einheiten. - 3.2.4. Zeitschrittbestimmung. - 3.3. Randbedingungen. - 3.3.1. Periodische Randbedingungen. - 3.3.2. Reflektive Randbedingungen. - 3.3.3. Spezifische Randbedingungen für Euler-Gleichungen. - 3.3.4. Absorptionsschicht. - 3.4. Diffusion. - 4. Atmosphärische Gleichgewichtszustände. - 4.1. Anforderungen an stationäre Zustände. - 4.1.1. Verschwindende Advektion von Masse und potentieller Temperatur. - 4.1.2. Stationäre Impulsgleichung. - 4.2. Wind ohne Corioliskraft. - 4.3. Geostrophischer Wind. - 4.4. Vorgegebener Grundstrom mit einstellbarer Baroklinität. - 4.4.1. Lösungsalgorithmus. - 4.4.2. Zulässige Windfelder und ihre Definition außerhalb des Modellgebietes. - 4.4.3. Spezialfall konstanten thermischen Windes. - 4.5. Barotroper Grundstrom als analytischer Spezialfall. - 4.6. Charakterisierung der Baroklinität. - 4.7. Geostrophischer Zustand für Flachwassergleichungen. - 5. Numerische Stabilität von Gleichgewichtszuständen und Erhaltungseigenschaften. - 5.1. Polynomiale Balancierung des DG-Verfahrens. - 5.1.1. Ausgangssituation („low0bal0“). - 5.1.2. Isotrope Reduktion des Polynomgrades der Quellterme („low1bal0“). - 5.1.3. Isotrope Polynomgradreduktion von Quelltermen sowie Projektion der Flussfunktion („low1bal1“). - 5.1.4. Volle Balancierung mit selektiver Polynomgradreduktion und Projektion der Flussfunktion („low2bal1“). - 5.2. Konvergenz. - 5.3. Langzeitstabilität und Erhaltungseigenschaften. - 6. Atmosphärische Testfälle. - 6.1. Aufsteigende warme Blase. - 6.2. Schwerewellen. - 6.3. Bergüberströmung. - 6.4. Barotrope Instabilität. - 7. Atmosphärische Instabilitäten in mittleren Breiten. - 7.1. Barotrope Instabilität mit Euler-Gleichungen in 2D und 3D. - 7.1.1. Wavelet-Spektrum. - 7.2. Barokline Instabilität in Abhängigkeit von statischer Stabilität und thermischem Wind. - 7.2.1. Einfluss der statischen Stabilität. - 7.2.2. Einfluss der vertikalen Diskretisierung. - 7.3. Entstehung zyklonaler Wirbel aus baroklin instabilem Grundstrom. - 7.3.1. Konfiguration. - 7.3.2. Entwicklung von Impulsdifferenz. - 7.3.3. Vorticity im Horizontalschnitt. - 7.3.4. Globale Charakterisierung . - 7.4. Langzeitentwicklung aus baroklinen Zuständen. - 7.4.1. Konfiguration. - 7.4.2. Entwicklung von Impulsdifferenz und Energie. - 7.4.3. Vorticity im Horizontalschnitt. - 7.4.4 Globale Charakterisierung. - 7.4.5. Wavelet-Spektrum. - 7.4.6. Zonales Mittel. - 8. Zusammenfassung und Ausblick. - A. Mathematische Aspekte. - A.1. Profilfunktionen. - A.2. Differenzen und Normen. - A.3. Wavelet-Analyse. - A.4. Darstellung aus der Diskretisierung. - A.5. Erhaltungseigenschaften mit Quadratur. - B. Details zu Euler-Gleichungen. - B.1. Vertikale Linearisierung der Euler-Gleichungen für Präkonditionierer des semi-impliziten Zeitschrittes. - B.1.1. Vertikales lineares Gleichungssystem. - B.1.2. Diskretisierung und Matrizen. - B.1.3. Implizites Gleichungssystem. - B.2. Zustände im hydrostatischen Gleichgewicht. - B.2.1. Isotherm. - B.2.2. Polytrop. - B.2.3. Isentrop. - B.2.4. Mehrfach polytrop. - B.2.5. Uniform geschichtet. - B.3. Barokliner Zustand imp-System. - C. Zusätzliche Simulationsdaten. - C.1. Stabilitätskarten zu baroklinen Langzeitsimulationen. - C.2. Wirbelentstehung nahe Oberrand. - C.3. Zusätzliche Horizontalschnitte des baroklinen Langzeitlaufes. - D. Implementierung: Programmpaket Polyflux. - E. Korrekturen zur Veröffentlichung. - Mathematische Definitionen. - Abkürzungen und Begriffe. - Literatur.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: M 20.94085
    Type of Medium: Monograph available for loan
    Pages: v, 146 Seiten , Graphiken
    Language: English
    Note: Dissertation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: AWI Bio-20-93529
    Description / Table of Contents: The Arctic is considered as a focal region in the ongoing climate change debate. The currently observed and predicted climate warming is particularly pronounced in the high northern latitudes. Rising temperatures in the Arctic cause progressive deepening and duration of permafrost thawing during the arctic summer, creating an ‘active layer’ with high bioavailability of nutrients and labile carbon for microbial consumption. The microbial mineralization of permafrost carbon creates large amounts of greenhouse gases, including carbon dioxide and methane, which can be released to the atmosphere, creating a positive feedback to global warming. However, to date, the microbial communities that drive the overall carbon cycle and specifically methane production in the Arctic are poorly constrained. To assess how these microbial communities will respond to the predicted climate changes, such as an increase in atmospheric and soil temperatures causing increased bioavailability of organic carbon, it is necessary to investigate the current status …
    Type of Medium: Dissertations
    Pages: 146 Blätter , Illustrationen
    Language: English
    Note: Table of content Abstract Zusammenfassung 1. Introduction 1.1. Motivation 1.2. Scientific Background 1.2.1. Permafrost in arctic environments 1.2.2. Carbon storage and emission in arctic environments 1.2.3. Methane cycling in arctic environments 1.3. Study Sites 1.3.1. Lena-Delta, Siberia 1.3.2. El’gygytgyn Crater Lake, Chukotka 1.4. Objectives and approach 1.5. Thesis organization 1.6. Summary of the included manuscripts and contribution of the co-authors 1.6.1. Response of methanogenic archaea to Late Pleistocene and Holocene climate changes in the Siberian Arctic 1.6.2. Response of microbial communities to landscape and climatic changes in a terrestrial permafrost sequence of the El’gygytgyn crater, Far East Russian Arctic 1.6.3. Glacial-interglacial microbial community dynamics in Middle Pleistocene sediments in the Lake El’gygytgyn, Far East Russian Arctic 2. Response of methanogenic archaea to Late Pleistocene and Holocene climate changes in the Siberian Arctic 2.1. Abstract 2.2. Introduction 2.3. Materials and Methods 2.3.1. Study site 2.3.2. Permafrost drilling and sample preparation 2.3.3. Sediment properties 2.3.4. Potential methane production rates 2.3.5. Lipid biomarker analysis 2.3.6. Detection of archaeol and isoprenoid GDGTs 2.3.7. Detection of PLFAs and PLELs 2.3.8. DNA extraction and polymerase chain reaction (PCR) amplification 2.3.9. Phylogenetic analysis 2.4. Results and Discussion 2.4.1. Methane profile of the Kurungnakh permafrost sequence 2.4.2. Signals of living microbial communities in the Kurungnakh permafrost sequence 2.4.3. Reconstruction of past microbial communities in the Kurungnakh permafrost sequence 2.4.4. Climate impact on the distribution of microbial communities in the Kurungnakh permafrost sequence 2.4.5. Climatic impact on the composition of methanogenic communities in the Kurungnakh permafrost sequence 2.5. Conclusion 2.6. Acknowledgement 3. Response of microbial communities to landscape and climatic changes in a terrestrial permafrost sequence of the El’gygytgyn crater, Far East Russian Arctic 3.1. Abstract 3.2. Introduction 3.3. Materials and Methods 3.3.1.Study site 3.3.2. Drilling and sample material 3.3.3. Sediment properties 3.3.4. Lipid biomarker analysis 3.3.5. Detection of glycerol dialkyl glycerol tetraethers (GDGTs) and archaeol 3.3.6. Detection of phospholipid fatty acids (PLFA) 3.3.7. Deoxyribonucleic acid (DNA) extraction and amplification 3.3.8. Quantitative PCR analysis of archaeal and bacterial small sub unit (SSU) rRNA genes 3.3.9. Phylogenetic analysis 3.4. Results 3.4.1. TOC-contents 3.4.2. Distribution of glycerol dialkyl glycerol tetraethers (GDGTs) and archaeol 3.4.3. Distribution of phospholipid fatty acids (PLFA) 3.4.4. Composition of archaeol and isoprenoid GDGTs 3.4.5. Quantification of bacterial and archaeal genes 3.4.6. Analysis of methanogenic community fingerprints 3.5. Discussion 3.5.1. Microbial communities in subaquatic deposits 3.5.2. Microbial communities in subaerial deposits 3.5.3. Microbial succession in the Holocene sequence of Lake El’gygytgyn permafrost 3.6.Conclusion 3.7. Acknowledgements 4. Glacial-interglacial microbial community dynamics in Middle Pleistocene sediments in the Lake El’gygytgyn, Far East Russian Arctic 4.1. Abstract 4.2. Introduction 4.3. Materials and Methods 4.3.1. Study site 4.3.2. Drilling and sample preparation 4.3.3. Sediment properties 4.3.4. Lipid biomarker analyses 4.3.5. Deoxyribonucleic acid (DNA) extraction and quantitative polymerase chain reaction (qPCR) 4.3.6. PCR amplification of methanogenic SSU rRNA genes 4.4. Results 4.4.1. Sedimentary TOC and biogenic silica concentration 4.4.2. Quantification of bacterial and archaeal genes 4.4.3. Quantification and composition of lipid biomarkers 4.4.4. Potential methane production 4.4.5. Methanogenic community composition 4.5. Discussion 4.6. Acknowledgements 5. Synthesis 5.1. The reaction of microbial communities to past climatic change in the Arctic 5.2.The response of microbial communities to carbon composition and availability 5.3. Implications from this study for future research 6. Data collection 6.1. Manuscript I: Response of methanogenic archaea to Late Pleistocene and Holocene climate changes in the Siberian Arctic 6.1.1. Sediment properties 6.1.2. Isoprenoid glycerol dialkyl glycerol tetraethers and archaeol 6.1.3. Branched glycerol dialkyl glycerol tetraethers 6.1.4. Phospholipid ester and ether lipids (summary) 6.2. Manuscript II: Response of microbial communities to landscape and climatic changes in a terrestrial permafrost sequence of the El’gygytgyn crater, Far East Russian Arctic 6.2.1. Sediment properties and gene quantifications 6.2.2. Phospholipid fatty acids composition 6.2.3. Isoprenoid glycerol dialkyl glycerol tetraethers and archaeol 6.2.4. Branched glycerol dialkyl glycerol tetraethers 6.3. Manuscript III: Glacial-interglacial microbial community dynamics in Middle Pleistocene sediments in the Lake El’gygytgyn, Far East Russian Arctic 6.3.1. Sediment properties and gene quantifications 6.3.2. Isoprenoid glycerol dialkyl glycerol tetraethers and archaeol 6.3.3. Branched glycerol dialkylglycerol tetraethers 7. References 8. Final thoughts and acknowledgements 9. Curriculum vitae 10.Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: AWI Bio-20-93993
    Type of Medium: Dissertations
    Pages: III, 127 Seiten , Illustrationen
    Language: English
    Note: Dissertation, Universität Potsdam, 2014 , Table of contents I - Abstract II - Zusammenfassung Chapter 1 - Introduction 1.1. Introduction 1.1.1 Motivation 1.1.2 Organisation of thesis 1.1 Scientific background 1.2.1 Arctic and wetland bryophytes 1.2.2 Bryophyte remains as palaeo-environmental indicators 1.2.3 Regional setting 1.3 Objectives ofthe thesis 1.4 Overview of the manuscripts 1.5 Contribution of the authors Chapter 2 - Manuscript #1 Abstract 2.1 Introduction 2.2 Geographic setting 2.3 Materials and methods 2.3.1 Fieldwork 2.3.2 Radiocarbon dating 2.3.3 Geochemical, stable carbon isotope, and granulometric analyses 2.3.4 Analyses of moss remains and vascular plant macrofossils 2.3.5 Pollen analysis 2.3.6 Diatom analysis 2.3.7 Statistical analysis 2.4 Results 2.4.1 High-resolution spatial characteristics oft the investigated polygon and vegetation pattern 2.4.2 Geochronology and age-depth relationships 2.4.3 General properties of the sedimentary fill 2.4.4 Bioindicators 2.4.5 Characterization oftwo different types of polygon pond sediment 2.5. Discussion 2.5.1 Small-scale spatial structure of polygons 2.5.2 Age-depth relationships 2.5.3 Proxy value of the analysed parameters 2.5.4 The general polygon development 2.5.5 Polygon development as a function of external controls and internal adjustment mechanisms 2.6 Conclusions Chapter 3 - Manuscript #11 Abstract 3.1 Introduction 3.2 Material und methods 3.2.1 Regional setting 3.2.3 Field methods and environmental data collection 3.2.4 Data analysis 3.3 Results 3.3.1 Major characteristics of the investigated polygons 3.3.2 Vegetation cover and its relationships with micro-relief and vegetation type 3.3.3 Vegetation alpha-diversity and its relationship with micro-relief and vegetation type 3.3.4 Vegetation composition and its relationship with micro-relief and vegetation type 3.4 Discussion 3.4.1 Patterns of cover, alpha-diversity and compositional turnover of vascular plants and bryophytes along the rim-pond transect (local-scale) 3.4.2 Patterns of cover, alpha-diversity and compositional turnover of vascular plants and bryophytes along the regional-scale forest-tundra transect 3.4.3 Indicator potential ofvascular plant and bryophyte remains from polygonal peats for the reconstruction of local hydrological and regional vegetation changes 3.4.4. Implications of the performed vegetation transect studies for future Arctic warming 3.5 Acknowledgements 2.4.4 Bioindicators 2.4.5 Characterization of two different types of polygon pond sediment 2.5. Discussion 2.5.1 Small-scale spatial structure of polygons 2.5.2 Age-depth relationships 2.5.3 Proxy value of the analysed parameters 2.5.4 The general polygon development 2.5.5 Polygon development as a function of external controls and internal adjustment mechanisms 2.6 Conclusions Chapter 3 - Manuscript #II Abstract 3.1 Introduction 3.2 Material und methods 3.2.1 Regional setting 3.2.3 Field methods and environmental data collection 3.2.4 Data analysis 3.3 Results 3.3.1 Major characteristics of the investigated polygons 3.3.2 Vegetation cover and its relationships with micro-relief and vegetation type 3.3.3 Vegetation alpha-diversity and its relationship with micro-relief and vegetation type 3.3.4 Vegetation composition and its relationship with micro-relief and vegetation type 3.4 Discussion 3.4.1 Patterns of cover, alpha-diversity and compositional turnover of vascular plants and bryophytes along the rim-pond transect (local-scale) 3.4.2 Patterns of cover, alpha-diversity and compositional turnover of vascular plants and bryophytes along the regional-scale forest-tundra transect 3.4.3 Indicator potential of vascular plant and bryophyte remains from polygonal peats for the reconstruction of local hydrological and regional vegetation changes 3.4.4. Implications of the performed vegetation transect studies for future Arctic warming 3.5 Acknowledgements Chapter 4 - Manuscript #3 Abstract 4.1 Introduction 4.2 Material and methods 4.2.1 Sites 4.2.2 Sampling 4.2.3 Investigated moss species 4.2.4 Measurements 4.2.5 Statistical Tests 4.3 Results 4.4 Discussion Chapter 5 - Discussion 5.1 Bryophytes of polygonal landscapes in Siberia 5.1.1 Modern bryophytes in the Siberian Arctic 5.1.2 Biochemical and isotopic characteristics of mosses 5.1.3 Reliability and potential of fossil bryophyte remains as palaeoproxies 5.2 Dynamics of low-centred polygons during the late Holocene 5.3 Outlook Appendix I - Preliminary Report Motivation Material and methods Results and first interpretation Appendix II Additional tables and figures of manuscript #1 Appendix III Additional figures of manuscript #2 Appendix IV - Quantitative approach of Standard Moss Stem (SMS3) Bibliography Acknowledgements Eidesstattliche Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Call number: AWI Bio-20-93530
    Description / Table of Contents: The Arctic tundra, covering approx. 5.5 % of the Earth’s land surface, is one of the last ecosystems remaining closest to its untouched condition. Remote sensing is able to provide information at regular time intervals and large spatial scales on the structure and function of Arctic ecosystems. But almost all natural surfaces reveal individual anisotropic reflectance behaviors, which can be described by the bidirectional reflectance distribution function (BRDF). This effect can cause significant changes in the measured surface reflectance depending on solar illumination and sensor viewing geometries. The aim of this thesis is the hyperspectral and spectro-directional reflectance characterization of important Arctic tundra vegetation communities at representative Siberian and Alaskan tundra sites as basis for the extraction of vegetation parameters, and the normalization of BRDF effects in off-nadir and multi-temporal remote sensing data. Moreover, in preparation for the upcoming German EnMAP (Environmental Mapping and Analysis Program…
    Type of Medium: Dissertations
    Pages: circa 330 Seiten , Illustrationen, Diagramme
    Language: English
    Note: TABLE OF CONTENTS Abstract Kurzfassung Table of Contents List of Figures List of Tables List of Abbreviations List of Symbols 1 INTRODUCTION 1.1 Background and Scientific Setting 1.2 Motivation and Research Questions 1.3 Structure of Thesis 2 FUNDAMENTALS OF HYPERSPECTRAL AND SPECTRO-DIRECTIONAL REMOTE SENSING 2.1 Hyperspectral Remote Sensing of Vegetation 2.2 Spectro-Directional Remote Sensing of Vegetation 2.3 The EnMAP Satellite System 2.4 Spectro-Goniometer Systems for the Ground-Based Measurement of BRDF Effects 3 THE TUNDRA PERMAFROST STUDY LOCATIONS AND THEIR ENVIRONMENT 3.1 The Eurasia Arctic Transect (EAT) 3.1.1 Geological and Climatic Setting 3.1.2 Vegetation 3.2 The North American Arctic Transect (NAAT) 3.2.1 Geological and Climatic Setting 3.2.2 Vegetation 4 OBSERVATIONS AND METHODOLOGY 4.1 Observations Used for this Study 4.1.1 The ECI-GOA-Yamal 2011 Expedition 4.1.2 The EyeSight- NAAT-Alaska 2012 Expedition 4.1.3 Data Used for Hyperspectral Characterization of Arctic Tundra 4.1.4 Data Used for Spectro-Directional Characterization of Arctic Tundra 4.2 Methodology Used for Field Work and Data Analysis 4.2.1 Field Spectroscopy and Hyperspectral Data Analysis 4.2.2 Considerations for the Field Spectro-Goniometer Measurements and the Spectro-Directional Data Analysis 5 DEVELOPMENT AND PRECOMMISSIONING INSPECTION OF THE MANTIS FIELD SPECTRO-GONIOMETER 5.1 Introduction 5.2 Theoretical Background 5.3 Description of the Field Spectro-Goniometer System 5.3.1 Construction Schedule 5.3.2 Description of the Field Spectro-Goniometer Platform (ManTIS) 5.3.3 Sensor Configuration of the AWI ManTIS Field Spectro-Goniometer 5.3.4 Measurement Strategy 5.3.5 Software for Semi-Automatic Control 5.4 Error Assessment 5.4.1 Radiometrical Accuracy 5.4.2 Pointing Accuracy 5.4.3 Ground Instantaneous Field of View and Sensor Self-Shadowing 5.4.4 Temporal Illumination Changes and Environmental Influences 5.5 Data Analysis 5.5.1 Data Processing 5.5.2 Data Visualization 5.6 Performance of ManTIS Field Spectro-Goniometer in the Field 5.6.1 Test Site and Experiment Setup 5.6.2 Results and Discussion 5.7 Conclusions and Outlook 6 HYPERSPECTRAL REFLECTANCE CHARACTERIZATION OF LOW ARCTIC TUNDRA VEGETATION 6.1 Introduction 6.2 Material & Methods 6.2.1 Study Area 6.2.2 Environmental Gradients/Zones and Vegetation Description 6.2.3 Data Acquisition and Pre-Processing 6.2.4 Data Analysis 6.3 Results 6.3.1 The Zonal Climate Gradient 6.3.2 Acidic Versus Non-Acidic Tundra (Soil pH Zones) 6.3.3 The Toposequence at Happy Valley (Subzone E) 6.3.4 The Soil Moisture Gradient at Franklin Bluffs (Subzone D) 6.4 Discussion 6.4.1 Overview of Field Characterization and Spectral Properties along the Gradients 6.4.2 Performance of Spectral Metrics and Vegetation Indices 6.5 Conclusions 7 RESULTS OF THE SPECTRO-DIRECTIONAL REFLECTANCE INVESTIGATIONS 7.1 Overview of the Spectro-Directional Reflectance Characteristics of Low Arctic Tundra Vegetation 7.1.1 Representativeness of the Study Plots Representing Tundra Vegetation 7.1.2 Vaskiny Dachi – Bioclimate Subzone D 7.1.3 Happy Valley – Bioclimate Subzone E 7.1.4 Franklin Bluffs – Bioclimate Subzone D 7.2 Influence of High Sun Zenith Angles on the Reflectance Anisotropy 7.2.1 MAT (Happy Valley) 7.2.2 MNT (Franklin Bluffs) 7.3 Variability in Multi-Angular Remote Sensing Products of Low Arctic Tundra Environments 7.3.1 Spectro-Directional Variability of Different Low Arctic Plant Communities 7.3.2 Spectro-Directional Variability under Varying Sun Zenith Angles 8 DISCUSSION 8.1 The Hyperspectral Reflectance Characteristics of Tundra Vegetation in Context of the Spectro-Goniometer Measurements 8.2 Applicability of the ManTIS Field Spectro-Goniometer System 8.3 The Spectro-Directional Reflectance Characteristics of Tundra Vegetation 8.4 Variability in Reflectance Anisotropy at High Sun Zenith Angles 8.5 Applicability of Multi- Angular Remote Sensing Products for Arctic Tundra Environments 9 CONCLUSIONS & OUTLOOK Acknowledgments References Appendix Table of Contents of the Appendix References of the Appendix Statutory Declaration / Eidesstattliche Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...