ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (7)
Collection
Years
Year
  • 1
    Publication Date: 2011-07-15
    Description: The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA’s Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA’s Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses. Focusing on the satellite era, from 1979 to the present, MERRA has achieved its goals with significant improvements in precipitation and water vapor climatology. Here, a brief overview of the system and some aspects of its performance, including quality assessment diagnostics from innovation and residual statistics, is given. By comparing MERRA with other updated reanalyses [the interim version of the next ECMWF Re-Analysis (ERA-Interim) and the Climate Forecast System Reanalysis (CFSR)], advances made in this new generation of reanalyses, as well as remaining deficiencies, are identified. Although there is little difference between the new reanalyses in many aspects of climate variability, substantial differences remain in poorly constrained quantities such as precipitation and surface fluxes. These differences, due to variations both in the models and in the analysis techniques, are an important measure of the uncertainty in reanalysis products. It is also found that all reanalyses are still quite sensitive to observing system changes. Dealing with this sensitivity remains the most pressing challenge for the next generation of reanalyses. Production has now caught up to the current period and MERRA is being continued as a near-real-time climate analysis. The output is available online through the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC).
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-11-01
    Description: An experiment is being conducted to directly compare the impact of all assimilated observations on short-range forecast errors in different forecast systems using an adjoint-based technique. The technique allows detailed comparison of observation impacts in terms of data type, location, satellite sounding channel, or other relevant attributes. This paper describes results for a “baseline” set of observations assimilated by three forecast systems for the month of January 2007. Despite differences in the assimilation algorithms and forecast models, the impacts of the major observation types are similar in each forecast system in a global sense. However, regional details and other aspects of the results can differ substantially. Large forecast error reductions are provided by satellite radiances, geostationary satellite winds, radiosondes, and commercial aircraft. Other observation types provide smaller impacts individually, but their combined impact is significant. Only a small majority of the total number of observations assimilated actually improves the forecast, and most of the improvement comes from a large number of observations that have relatively small individual impacts. Accounting for this behavior may be especially important when considering strategies for deploying adaptive (or “targeted”) components of the observing system.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-05-01
    Description: Langland and Baker introduced an approach to assess the impact of observations on the forecasts. In that approach, a state-space aspect of the forecast is defined and a procedure is derived ultimately relating changes in the aspect with changes in the observing system. Some features of the state-space approach are to be noted: the typical choice of forecast aspect is rather subjective and leads to incomplete assessment of the observing system, it requires availability of a verification state that is in practice correlated with the forecast, and it involves the adjoint operator of the entire data assimilation system and is thus constrained by the validity of this operator. This article revisits the topic of observation impacts from the perspective of estimation theory. An observation-space metric is used to allow inferring observation impact on the forecasts without the limitations just mentioned. Using differences of observation-minus-forecast residuals obtained from consecutive forecasts leads to the following advantages: (i) it suggests a rather natural choice of forecast aspect that directly links to the data assimilation procedure, (ii) it avoids introducing undesirable correlations in the forecast aspect since verification is done against the observations, and (iii) it does not involve linearization and use of adjoints. The observation-space approach has the additional advantage of being nearly cost free and very simple to implement. In its simplest form it reduces to evaluating the statistics of observation-minus-background and observation-minus-analysis residuals with traditional methods. Illustrations comparing the approaches are given using the NASA Goddard Earth Observing System.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: This presentation discusses an approach to estimate model error using observation residuals. Based on the sequential fixed-lag smoother; we introduce a diagnostic procedure to allow estimating model error over a dense observing system. Optimality considerations are examined in light of the sequential results. The procedure is re-interpreted in the language of variational assimilation, such as 4d-Var. Illustrations of the approach are given by studying both identical-twin and fraternal-twin experimental settings for a system governed by Lorenz-type dynamics. Preliminary results by looking at observation residual statistics for the ECMWF data assimilation system are also shown. The presentation will be part of a series of discussions on issues related to four-dimensional data assimilation under weak-constraint and methodologies to estimate model error.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.6075.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Global Modeling and Assimilation Offce (GMAO) is currently using an IAU-based 3D-Var data assimilation system. GMAO has been experimenting with a 3D-Var-hybrid version of its data assimilation system (DAS) for over a year now, which will soon become operational and it will rapidly progress toward a 4D-EnVar. Concurrently, the machinery to exercise traditional 4DVar is in place and it is desirable to have a comparison of the traditional 4D approach with the other available options, and evaluate their performance in the Goddard Earth Observing System (GEOS) DAS. This work will also explore the possibility for constructing a reduced order model (ROM) to make traditional 4D-Var computationally attractive for increasing model resolutions. Part of the research on ROM will be to search for a suitably acceptable space to carry on the corresponding reduction. This poster illustrates how the IAU-based 4D-Var assimilation compares with our currently used IAU-based 3D-Var.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN17766 , World Weather Open Science Conference; Aug 16, 2014 - Aug 21, 2014; Montreal; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Langland and Baker introduced an approach to assess the impact of observations on the forecasts. In that approach, a state-space aspect of the forecast is defined and a procedure is derived ultimately relating changes in the aspect with changes in the observing system. Some features of the state-space approach are to be noted: the typical choice of forecast aspect is rather subjective and leads to incomplete assessment of the observing system, it requires availability of a verification state that is in practice correlated with the forecast, and it involves the adjoint operator of the entire data assimilation system and is thus constrained by the validity of this operator. This article revisits the topic of observation impacts from the perspective of estimation theory. An observation-space metric is used to allow inferring observation impact on the forecasts without the limitations just mentioned. Using differences of observation-minus-forecast residuals obtained from consecutive forecasts leads to the following advantages: (i) it suggests a rather natural choice of forecast aspect that directly links to the data assimilation procedure, (ii) it avoids introducing undesirable correlations in the forecast aspect since verification is done against the observations, and (iii) it does not involve linearization and use of adjoints. The observation-space approach has the additional advantage of being nearly cost free and very simple to implement. In its simplest form it reduces to evaluating the statistics of observationminus- background and observation-minus-analysis residuals with traditional methods. Illustrations comparing the approaches are given using the NASA Goddard Earth Observing System.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN10067 , Monthly Weather Review; 141; 5; 1484-1505
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: The Global Modeling and Assimilation Office is preparing to upgrade its three-dimensional variational system to a hybrid approach in which the ensemble is generated using a square-root ensemble Kalman filter (EnKF) and the variational problem is solved using the Grid-point Statistical Interpolation system. As in most EnKF applications, we found it necessary to employ a combination of multiplicative and additive inflations, to compensate for sampling and modeling errors, respectively and, to maintain the small-member ensemble solution close to the variational solution; we also found it necessary to re-center the members of the ensemble about the variational analysis. During tuning of the filter we have found re-centering and additive inflation to play a considerably larger role than expected, particularly in a dual-resolution context when the variational analysis is ran at larger resolution than the ensemble. This led us to consider a hybrid strategy in which the members of the ensemble are generated by simply converting the variational analysis to the resolution of the ensemble and applying additive inflation, thus bypassing the EnKF. Comparisons of this, so-called, filter-free hybrid procedure with an EnKF-based hybrid procedure and a control non-hybrid, traditional, scheme show both hybrid strategies to provide equally significant improvement over the control; more interestingly, the filter-free procedure was found to give qualitatively similar results to the EnKF-based procedure.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN10163
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...