ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: A three-dimensional (3D) Ultra-Wideband (UWB) Time--of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide and felt upset. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. In this presentation, we discuss the 3D TOA tracking algorithm and the performance evaluation based on different tracking baseline configurations. The simulation results show that two configurations of the tracking baseline are feasible. With 100 picoseconds standard deviation (STD) of TOA estimates, the average tracking error 0.2392 feet (about 7 centimeters) can be achieved for configuration Twisted Rectangle while the average tracking error 0.9183 feet (about 28 centimeters) can be achieved for configuration Slightly-Twisted Top Rectangle . The tracking accuracy can be further improved with the improvement of the STD of TOA estimates. With 10 picoseconds STD of TOA estimates, the average tracking error 0.0239 feet (less than 1 centimeter) can be achieved for configuration "Twisted Rectangle".
    Keywords: Mathematical and Computer Sciences (General)
    Type: JSC-CN-26377 , AIAA Houston Section Annual Technical Symposium; May 18, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: Wheel-based sensors for detection of ice on roads and approximate measurement of the thickness of the ice are under development. These sensors could be used to alert drivers to hazardous local icing conditions in real time. In addition, local ice-thickness measurements by these sensors could serve as guidance for the minimum amount of sand and salt required to be dispensed locally onto road surfaces to ensure safety, thereby helping road crews to utilize their total supplies of sand and salt more efficiently. Like some aircraft wing-surface ice sensors described in a number of previous NASA Tech Briefs articles, the wheelbased ice sensors are based, variously, on measurements of changes in capacitance and/or in radio-frequency impedance as affected by ice on surfaces. In the case of ice on road surfaces, the measurable changes in capacitance and/or impedance are attributable to differences among the electric permittivities of air, ice, water, concrete, and soil. In addition, a related phenomenon that can be useful for distinguishing between ice and water is a specific transition in the permittivity of ice at a temperature- dependent frequency. This feature also provides a continuous calibration of the sensor to allow for changing road conditions. Several configurations of wheel-based ice sensors are under consideration. For example, in a simple two-electrode capacitor configuration, one of the electrodes would be a circumferential electrode within a tire, and the ground would be used as the second electrode. Optionally, the steel belts that are already standard parts of many tires could be used as the circumferential electrodes. In another example (see figure), multiple electrodes would be embedded in rubber between the steel belt and the outer tire surface. These electrodes would be excited in alternating polarities at one or more suitable audio or radio frequencies to provide nearly continuous monitoring of the road surface under the tire. In still another example, one or more microwave stripline(s) or coplanar waveguide(s) would be embedded in a tire near its outer surface; in comparison with lower-frequency capacitive devices, a device of this type could be more sensitive.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23565-1 , NASA Tech Briefs, November 2011; 12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: A novel approach for the immediate sealing of traumatic wounds is under development. A portable microwave generator and handheld antenna are used to seal wounds, binding the edges of the wound together using a biodegradable protein sealant or solder. This method could be used for repairing wounds in emergency settings by restoring the wound surface to its original strength within minutes. This technique could also be utilized for surgical purposes involving solid visceral organs (i.e., liver, spleen, and kidney) that currently do not respond well to ordinary surgical procedures. A miniaturized microwave generator and a handheld antenna are used to deliver microwave energy to the protein solder, which is applied to the wound. The antenna can be of several alternative designs optimized for placement either in contact with or in proximity to the protein solder covering the wound. In either case, optimization of the design includes the matching of impedances to maximize the energy delivered to the protein solder and wound at a chosen frequency. For certain applications, an antenna could be designed that would emit power only when it is in direct contact with the wound. The optimum frequency or frequencies for a specific application would depend on the required depth of penetration of the microwave energy. In fact, a computational simulation for each specific application could be performed, which would then match the characteristics of the antenna with the protein solder and tissue to best effect wound closure. An additional area of interest with potential benefit that remains to be validated is whether microwave energy can effectively kill bacteria in and around the wound. Thus, this may be an efficient method for simultaneously sterilizing and closing wounds.
    Keywords: Man/System Technology and Life Support
    Type: MSC-24238-1 , NASA Tech Briefs, August 2011; 19-20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: The presentation examines BCR radio frequency identification (BCR/RFID) hardware, integrated RFID over a delay/disruption tolerant network (DTN), and pilot projects for RFID for center operations.
    Keywords: Systems Analysis and Operations Research
    Type: JSC-CN-20550 , Consultative Committee for Space Data Systems (CCSDS) Spring Technical Meeting; May 05, 2010 - May 07, 2010; Portsmouth, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: The movie describes collaboration between NASA and Vint Cerf on the development of Disruption Tolerant Networks (DTN) for use in space exploration. Current evaluation efforts at Johnson Space Center are focused on the use of DTNs in space communications. Tests include the ability of rovers to store data for later display, tracking local and remote habitat inventory using radio-frequency identification tags, and merging networks.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: JSC-CN-20596
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-27
    Description: Methods and apparatus for joining biological tissue together are provided. In at least one specific embodiment, a method for joining biological tissue together can include applying a biological solder on a wound. A barrier layer can be disposed on the biological solder. An antenna can be located in proximate spatial relationship to the barrier layer. An impedance of the antenna can be matched to an impedance of the wound. Microwaves from a signal generator can be transmitted through the antenna to weld two or more biological tissue pieces of the wound together. A power of the microwaves can be adjusted by a control circuit disposed between the antenna and the signal generator. The heating profile within the tissue may be adjusted and controlled by the placement of metallic microspheres in or around the wound.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-27
    Description: A passive tracking system is provided with a plurality of ultrawideband (UWB) receivers that is asynchronous with respect to a UWB transmitter. A geometry of the tracking system may utilize a plurality of clusters with each cluster comprising a plurality of antennas. Time Difference of Arrival (TDOA) may be determined for the antennas in each cluster and utilized to determine Angle of Arrival (AOA) based on a far field assumption regarding the geometry. Parallel software communication sockets may be established with each of the plurality of UWB receivers. Transfer of waveform data may be processed by alternately receiving packets of waveform data from each UWB receiver. Cross Correlation Peak Detection (CCPD) is utilized to estimate TDOA information to reduce errors in a noisy, multipath environment.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: This paper describes a research and development effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar./Mars rovers and astronauts during early exploration missions when satellite navigation systems are not available. U IATB impulse radio (UWB-IR) technology is exploited in the design and implementation of the prototype location and tracking system. A three-dimensional (3D) proximity tracking prototype design using commercially available UWB products is proposed to implement the Time-Difference- Of-Arrival (TDOA) tracking methodology in this research effort. The TDOA tracking algorithm is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. Simulations show that the TDOA algorithm can achieve the fine tracking resolution with low noise TDOA estimates for close-in tracking. Field tests demonstrated that this prototype UWB TDOA High Resolution 3D Proximity Tracking System is feasible for providing positioning-awareness information in a 3D space to a robotic control system. This 3D tracking system is developed for a robotic control system in a facility called "Moonyard" at Honeywell Defense & System in Arizona under a Space Act Agreement.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: JSC-CN-20558 , IEEE/ION Position Location and Nav Symposium 2010; May 04, 2010 - May 06, 2010; Palm Springs, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: Systems that measure the angles of arrival of ultra-wideband (UWB) radio signals and perform triangulation by use of those angles in order to locate the sources of those signals are undergoing development. These systems were originally intended for use in tracking UWB-transmitter-equipped astronauts and mobile robots on the surfaces of remote planets during early stages of exploration, before satellite-based navigation systems become operational. On Earth, these systems could be adapted to such uses as tracking UWB-transmitter-equipped firefighters inside buildings or in outdoor wildfire areas obscured by smoke. The same characteristics that have made UWB radio advantageous for fine resolution ranging, covert communication, and ground-penetrating radar applications in military and law-enforcement settings also contribute to its attractiveness for the present tracking applications. In particular, the waveform shape and the short duration of UWB pulses make it possible to attain the high temporal resolution (of the order of picoseconds) needed to measure angles of arrival with sufficient precision, and the low power spectral density of UWB pulses enables UWB radio communication systems to operate in proximity to other radio communication systems with little or no perceptible mutual interference.
    Keywords: Man/System Technology and Life Support
    Type: MSC-24184-1 , NASA Tech Briefs, December 2010; 12-13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: A novel approach for the immediate sealing of traumatic wounds is under development. A portable microwave generator and handheld antenna are used to seal wounds, binding the edges of the wound together using a biodegradable protein sealant or solder. This method could be used for repairing wounds in emergency settings, by restoring the wound surface to its original strength within minutes. This technique could also be utilized for surgical purposes involving solid visceral organs (i.e., liver, spleen, and kidney) that currently do not respond well to ordinary surgical procedures. A miniaturized microwave generator and a handheld antenna are used to deliver microwave energy to the protein solder, which is applied to the wound. The antenna can be of several alternative designs optimized for placement either in contact with or proximity to the protein solder covering the wound. In either case, optimization of the design includes the matching of impedances to maximize the energy delivered to the protein solder and wound at a chosen frequency. For certain applications, an antenna could be designed that would emit power only when it is in direct contact with the wound. The optimum frequency or frequencies for a specific application would depend on the required depth of penetration of the microwave energy. In fact, a computational simulation for each specific application could be performed, which would then match the characteristics of the antenna with the protein solder and tissue to best effect wound closure. An additional area of interest with potential benefit that remains to be validated is whether microwave energy can effectively kill bacteria in and around the wound. Thus, this may be an efficient method for simultaneously sterilizing and closing wounds. Using microwave energy to seal wounds has a number of advantages over lasers, which are currently in experimental use in some hospitals. Laser tissue welding is unsuitable for emergency use because its large, bulky equipment cannot be easily moved between operating rooms, let alone relocated to field sites where emergencies often occur. In addition, this approach is highly dependent on the uniformity and thickness of the protein solder as well as the surgeon s skills. In contrast, the use of microwave energy is highly tolerant of the thickness of the protein solder, level of fluids in and around the wound, and other parameters that can adversely affect the outcome of laser welding. However, controlling the depth of penetration of the microwave energy into the wound is critical for achieving effective wound sealing without damaging the adjacent tissue. In addition, microspheres that encapsulate metallic cores could also be incorporated into the protein solder to further control the depth of penetration of the microwave energy.
    Keywords: Man/System Technology and Life Support
    Type: MSC-24238-1 , NASA Tech Briefs, March 2011; 33
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...