ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (14)
Collection
Keywords
Language
Year
  • 1
    Publication Date: 2013-04-23
    Description: Nature Materials 12, 439 (2013). doi:10.1038/nmat3557 Authors: M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton & A. Fontcuberta i Morral
    Print ISSN: 1476-1122
    Electronic ISSN: 1476-4660
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-05-21
    Description: The impact of aerosols above and around the Tibetan Plateau on the Asian Summer Monsoon during pre-monsoon seasons March-April-May 2007, 2008, and 2009 is investigated by means of remote sensing and radiative transfer modelling. Four source regions are found to be responsible for the high aerosol loading around the Tibetan Plateau: the Taklamakan Desert, the Ganges Plains, the Indus Plains, and the Arabian Sea. CALIPSO lidar satellite data, providing vertically resolved images of aerosols, shows aerosol concentrations to be highest in the lower 5 km of the atmosphere with only little amounts reaching the Tibetan Plateau altitude. Using a radiative transfer model we find that aerosol plumes reduce shortwave radiation throughout the Monsoon region in the seasonal average by between 20 and 30 W/m2. Peak shortwave heating in the lower troposphere reaches 0.2 K/day. In higher layers this shortwave heating is partly balanced by longwave cooling. Although high-albedo surfaces, such as deserts or the Tibetan Plateau, increase the shortwave heating by around 10%, the overall effect is strongest close to the aerosol sources. A strong elevated heating which could influence large-scale monsoonal circulations as suggested by previous studies is not found.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-02-18
    Description: The impact of aerosols above and around the Tibetan Plateau on the Asian Summer Monsoon during pre-monsoon seasons March-April-May 2007, 2008, and 2009 is investigated by means of remote sensing and radiative transfer modelling. Four source regions are found to be responsible for the high aerosol loading around the Tibetan Plateau: the Taklamakan Desert, the Ganges Plains, the Indus Plains, and the Arabian Sea. CALIPSO lidar satellite data, providing vertically resolved images of aerosols, shows aerosol concentrations to be highest in the lower 5 km of the atmosphere with only little amounts reaching the Tibetan Plateau altitude. Using a radiative transfer model we find that aerosol plumes reduce shortwave radiation throughout the Monsoon region in the seasonal average by between 20 and 30 W/m2. Peak shortwave heating in the lower troposphere reaches 0.2 K/day. In higher layers this shortwave heating is partly balanced by longwave cooling. Although high-albedo surfaces, such as deserts or the Tibetan Plateau, increase the shortwave heating by around 10%, the overall effect is strongest close to the aerosol sources. A strong elevated heating which could influence large-scale monsoonal circulations as suggested by previous studies is not found.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-11-23
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Geophysical Research Abstracts; Vol. 14, EGU2012-782, 2012
    Publication Date: 2020-02-12
    Description: Regional ocean models are extraordinarily useful tools as complements to global models, since they work at higher spatial and temporal resolutions and parameters can be adapted to the particular conditions in the region of interest. These advantages are bought with new potential issues at the boundaries of the modelled region. At open boundaries, a global model has to provide boundary conditions such as velocity, temperature, and salinity, necessarily obtained at coarser resolution and with less accuracy. The region we focus on is the surroundings of South Africa, comprising parts of the Southern Atlantic and Southern Indian Ocean as well as the Southern Ocean down to the ice shelves of Antarctica.We attempt to better understand the dynamics of the Agulhas Current, which has been shown to have far-reaching impacts also on the Meridional Overturning Circulation and, thereby, on the world’s climate. With our study region expanded southwards, including a fraction of the Antarctic Circumpolar Current (ACC), we investigate the local current-current interactions which are conveyed by small-scale turbulences. In our analysis, we focus on sea surface height and ocean bottom pressure and the different forcing terms that influence these two variables. We configure a version of the Regional Ocean Modelling System (ROMS) to simulate ocean dynamics around South Africa, forced with ERA-Interim atmospheric data, and explore the sensitivity to various choices of boundary conditions. The horizontal resolution of 0.25 degrees - 0.25 degrees at 32 vertical levels is supposed to resolve mesoscale eddies as well as the climatologically important shedding of Agulhas rings. To show the capabilities of our model, we compare the output in terms of sea-surface heights to altimetric measurements provided by AVISO. In-situ data of ocean bottom pressure measured in the ACC path adds to the observational database. The study area is especially promising as, additionally, we can show whether the simulations of an integrated ocean bottom pressure signal correspond to the residuals in measurements of the Superconducting Gravimeter in Sutherland, South Africa.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Description: We implement the effects of gravitational self-attraction and loading (SAL) into a global baroclinic ocean circulation model and investigate effects on sea level patterns, ocean circulation, and density distributions. We compute SAL modifications as an additional force on the water masses at every time step by decomposing the field of ocean bottom pressure anomalies into spherical harmonic functions and then applying Love numbers to account for the elastic properties of the solid Earth. Considering SAL in the postprocessing turns out to be insufficient, especially in coastal waters and on subweekly time scales, where SAL modifies local sea level by around 0.6–0.8 cm on average; in the open ocean, changes mostly remain around 0.3 cm. Modifications of water velocities as well as of heat and salt distributions are modeled, yet they are small. Simple parameterizations of SAL effects currently used in a number of ocean circulation models suffer from the process's inhomogeneity in space and time. These parameterizations improve the modeled sea level patterns but fail to reproduce SAL impacts on circulation and density distributions. We therefore suggest to explicitly consider the full SAL effect in ocean circulation models, especially when investigating sea level variations faster than around 4 days.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/bookPart
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Description: The impact of aerosols above and around the Tibetan Plateau on the Asian Summer Monsoon during pre-monsoon seasons March-April-May 2007, 2008, and 2009 is investigated by means of remote sensing and radiative transfer modelling. Four source regions are found to be responsible for the high aerosol loading around the Tibetan Plateau: the Taklamakan Desert, the Ganges Plains, the Indus Plains, and the Arabian Sea. CALIPSO lidar satellite data, providing vertically resolved images of aerosols, shows aerosol concentrations to be highest in the lower 5 km of the atmosphere with only little amounts reaching the Tibetan Plateau altitude. Using a radiative transfer model we find that aerosol plumes reduce shortwave radiation throughout the Monsoon region in the seasonal average by between 20 and 30 W/m2. Peak shortwave heating in the lower troposphere reaches 0.2 K/day. In higher layers this shortwave heating is partly balanced by longwave cooling. Although high-albedo surfaces, such as deserts or the Tibetan Plateau, increase the shortwave heating by around 10%, the overall effect is strongest close to the aerosol sources. A strong elevated heating which could influence large-scale monsoonal circulations as suggested by previous studies is not found.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Description: Ocean bottom pressure (OBP) variability in the region of the Agulhas Current off the South African coast is a crucial variable in the understanding of dynamic processes in the ocean, but measurements currently available lack either precision or spatial and temporal coverage. We provide a quantitative estimate of OBP variability throughout the region with the help of a setup of the ROMS regional ocean model. Driving the model with boundary conditions from a global ocean model and atmospheric reanalysis data and running it for 8 years, we are able to reproduce many characteristic properties of the regional ocean circulation visible in sea surface height and OBP fields. While the in situ pressure-inverted echo sounders (PIES) measuring local OBP variations on short time scales are sparse in the region, our model provides a comprehensive estimate of OBP variations throughout the region which reach values of up to 15 hPa when barotropic Agulhas rings reach the Cape Basin. These signals turn out to be difficult to measure with current gravimetry solutions from the GRACE satellites, but estimates of localized noise levels for a GRACE follow-on mission let the search for them in future satellite measurements appear viable.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Geophysical Research Abstracts, 13, EGU2011-1405, 2011
    Publication Date: 2020-02-12
    Description: While global sea level has been rising since the onset of the industrialization, regional sea level shows far more variable patterns on multiple scales in space and time. During the last two decades, regional sea-level distributions have been measured by means of satellite altimetry; these measurements can be compared to the output of numerical global ocean models. We investigate the skill that oceanic general circulation models, in particular the Ocean Model for Circulation and Tides (OMCT), show in reconstructing sea-level patterns. We find that coarse-resolution, non-eddy-resolving models succeed in reconstructing slow, large-scale sea-level variations such as major ocean currents, ENSO, and the seasonal cycle, while they lack skill in simulating local extremes and fast changes that show up in the higher moments of the local statistical distributions. In addition, we implement a routine into the model that computes sea-level changes due to the Loading and Self- Attraction of the seawater (LSA) using degree-dependent Love numbers. LSA takes into account the interactions of seawater with the solid Earth as well as the gravitational attraction that the seawater exerts on itself. Up to now, only tidal models have considered this effect, and only in a rather basic manner. The impact of LSA on sea-level fields and ocean dynamics simulated with a baroclinic circulation model is still rather unclear. In previous OMCT simulations, for instance, LSA has been parameterized by including an additional potential proportional to the mass of the local water column. Considering the effect by applying degree-dependent Love numbers is expected to reduce the differences between modelled sea levels and observations considerably. We discuss the difference that our approach makes for sea-level variability on various temporal and spatial scales. Since the exact computation at every time step is costly in terms of computing power, we also investigate possible trade-offs between physical accurateness and computational effectiveness.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...