ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (7)
Collection
Years
Year
  • 1
    Publication Date: 2011-11-01
    Description: The M 7.1 Darfield earthquake occurred 40 km west of Christchurch (New Zealand) on 4 September 2010. Six months after, the city was struck again with an M 6.2 event on 22 February local time (21 February UTC). These events resulted in significant damage to infrastructure in the city and its suburbs. The purpose of this study is to evaluate the performance of global predictive models (GMPEs) using the strong motion data obtained from these two events to improve future seismic hazard assessment and building code provisions for the Canterbury region. The Canterbury region is located on the boundary between the Pacific and Australian plates; its surface expression is the active right lateral Alpine fault (Berryman et al. 1993). Beneath the North Island and the north South Island, the Pacific plate subducts obliquely under the Australian plate, while at the southwestern part of the South Island, a reverse process takes place. Although New Zealand has experienced several major earthquakes in the past as a result of its complex seismotectonic environment (e.g., M 7.1 1888 North Canterbury, M 7.0 1929 Arthur's Pass, and M 6.2 1995 Cass), there was no evidence of prior seismic activity in Christchurch and its surroundings before the September event. The Darfield and Christchurch earthquakes occurred along the previously unmapped Greendale fault in the Canterbury basin, which is covered by Quaternary alluvial deposits (Forsyth et al. 2008). In Figure 1, site conditions of the Canterbury epicentral area are depicted on a VS30 map. This map was determined on the basis of topographic slope calculated from a 1-km grid using the method of Allen and Wald (2007). Also shown are the locations of strong motion stations. The Darfield event was generated as a result of a complex rupture mechanism; the recordings and geodetic data...
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-01
    Description: The 22 February 2011 magnitude 6.2 Christchurch earthquake, centered southeast of Christchurch, was part of the aftershock sequence that has been occurring since the September 2010 magnitude 7.1 quake near Darfield, 40 km west of the city. The Christchurch earthquake killed more than 180 people, damaged or destroyed more than 100,000 buildings, and is New Zealand's most deadly disaster since the earthquake that struck the Napier and Hastings area on 3 February 1931. This special focused issue of Seismological Research Letters, which I had the fortune to edit, contains a selected set of 19 original technical papers. These papers cover different aspects of the 2011 Christchurch earthquake from seismological, geodetic, geological, and engineering perspectives. The first eight papers focus on earthquake source modeling, fault stress variation, and aftershock sequence. The paper by Guidotti et al. presents three-dimensional numerical simulations of the Christchurch earthquake by comparing different fault and interface models. Using data from a dense network of strong motion instruments, Holden et al. presents the inversion scheme for constraining the source kinematics of the Christchurch event. The constrained geodetic...
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-11-01
    Description: Nonlinear response history analysis (RHA) is now increasingly used for performance-based seismic design of tall buildings. Required for nonlinear RHAs is a set of ground motions selected and scaled appropriately so that analysis results would be accurate (unbiased) and efficient (having relatively small dispersion). This paper evaluates accuracy and efficiency of recently developed modal pushover– based scaling (MPS) method to scale ground motions for tall buildings. The procedure presented explicitly considers structural strength and is based on the standard intensity measure (IM) of spectral acceleration in a form convenient for evaluating existing structures or proposed designs for new structures. Based on results presented for two actual buildings (19 and 52 stories, respectively), it is demonstrated that the MPS procedure provided a highly accurate estimate of the engineering demand parameters (EDPs), accompanied by significantly reduced record-to-record variability of the responses. In addition, the MPS procedure is shown to be superior to the scaling procedure specified in the ASCE/SEI 7-05 document.
    Print ISSN: 8755-2930
    Electronic ISSN: 1944-8201
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-08-01
    Description: The normal-faulting earthquake of 6 April 2009 in the Abruzzo Region of central Italy caused heavy losses of life and substantial damage to centuries-old buildings of significant cultural importance and to modern reinforced-concrete-framed buildings with hollow masonry infill walls. Although structural deficiencies were significant and widespread, the study of the characteristics of strong motion data from the heavily affected area indicated that the short duration of strong shaking may have spared many more damaged buildings from collapsing. It is recognized that, with this caveat of short-duration shaking, the infill walls may have played a very important role in preventing further deterioration or collapse of many buildings. It is concluded that better new or retrofit construction practices that include reinforced-concrete shear walls may prove helpful in reducing risks in such seismic areas of Italy, other Mediterranean countries, and even in United States, where there are large inventories of deficient structures.
    Print ISSN: 8755-2930
    Electronic ISSN: 1944-8201
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-08-01
    Description: U.S. national building codes refer to the ASCE/SEI-7 provisions for selecting and scaling ground motions for use in nonlinear response history analysis of structures. Because the limiting values for the number of records in the ASCE/SEI-7 are based on engineering experience, this study examines the required number of records statistically, such that the scaled records provide accurate, efficient, and consistent estimates of “true” structural responses. Based on elastic–perfectly plastic and bilinear single-degree-of-freedom systems, the ASCE/SEI-7 scaling procedure is applied to 480 sets of ground motions; the number of records in these sets varies from three to ten. As compared to benchmark responses, it is demonstrated that the ASCE/SEI-7 scaling procedure is conservative if fewer than seven ground motions are employed. Utilizing seven or more randomly selected records provides more accurate estimate of the responses. Selecting records based on their spectral shape and design spectral acceleration increases the accuracy and efficiency of the procedure.
    Print ISSN: 8755-2930
    Electronic ISSN: 1944-8201
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-01
    Description: The Graizer-Kalkan ground-motion prediction equation (GMPE) for peak ground acceleration (PGA) constitutes a series of filters, each of which represents a certain physical phenomenon affecting the radiation of seismic waves from the source. The performance of this GMPE is examined by using about 14,000 records from 245 worldwide shallow crustal events. The recorded data and predictions show an excellent match as far as 100 km from the fault. Beyond 100 km, the data generally show faster attenuation on the order of Rrup−4 due to a relatively low Q (as in the western United States) or slower attenuation on the order of Rrup−1.5 due to a high Q (as in the central and eastern United States). An improved GMPE is developed to account for regional variations in ground motion attenuation. The The new GMPE produces a better match to recorded data up to 500 km from the fault.
    Print ISSN: 8755-2930
    Electronic ISSN: 1944-8201
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-11-01
    Description: In this paper, we have combined the U.S. Geological Survey's National Seismic Hazard Maps model with the California geologic map showing 17 generalized geologic units that can be defined by their VS30. We regrouped these units into seven VS30 values and calculated a probabilistic seismic hazard map for the entire state for each VS30 value. By merging seismic hazard maps based on the seven different VS30 values, a suite of seismic hazard maps was computed for 0.2 and 1.0 s spectral ordinates at 2% probability of exceedance (PE) in 50 years. The improved hazards maps explicitly incorporate the site effects and their spatial variability on ground motion estimates. The spectral acceleration (SA) at 1.0 s map of seismic shaking potential for California has now been published as California Geological Survey Map Sheet 48.
    Print ISSN: 8755-2930
    Electronic ISSN: 1944-8201
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...