ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-10-01
    Description: Recent parallel development of improved quantitative methods to analyze intensity distributions for historical earthquakes and of web-based systems for collecting intensity data for modern earthquakes provides an opportunity to reconsider not only important individual historical earthquakes but also the overall characterization of intensity distributions for historical events. The focus of this study is a comparison between intensity distributions of historical earthquakes with those from modern earthquakes for which intensities have been determined by the U.S. Geological Survey "Did You Feel It?" (DYFI) website (see Data and Resources ). As an example of a historical earthquake, I focus initially on the 1843 Marked Tree, Arkansas, event. Its magnitude has been previously estimated as 6.0–6.2. I first reevaluate the macroseismic effects of this earthquake, assigning intensities using a traditional approach, and estimate a preferred magnitude of 5.4. Modified Mercalli intensity (MMI) values for the Marked Tree earthquake are higher, on average, than those from the 2011 M w  5.8 Mineral, Virginia, earthquake for distances ≤500 km but comparable or lower on average at larger distances, with a smaller overall felt extent. Intensity distributions for other moderate historical earthquakes reveal similar discrepancies; the discrepancy is also even more pronounced using earlier published intensities for the 1843 earthquake. I discuss several hypotheses to explain the discrepancies, including the possibility that intensity values associated with historical earthquakes are commonly inflated due to reporting/sampling biases. A detailed consideration of the DYFI intensity distribution for the Mineral earthquake illustrates how reporting and sampling biases can account for historical earthquake intensity biases as high as two intensity units and for the qualitative difference in intensity distance decays for modern versus historical events. Thus, intensity maps for historical earthquakes tend to imply more widespread damage patterns than are revealed by intensity distributions of modern earthquakes of comparable magnitude. However, intensity accounts of historical earthquakes often include fragmentary accounts suggesting long-period shaking effects that will likely not be captured fully in historical intensity distributions. Online Material: Archival accounts for the 4 January 1843 Marked Tree, Arkansas, and 8 October 1857 Southern Illinois earthquakes.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-04-01
    Description: We determine frequency-dependent attenuation 1/Q(f?) for the Hispaniola region using direct S and Lg waves over five distinct passbands from 0.5 to 16 Hz. Data consist of 832 high-quality vertical and horizontal component waveforms recorded on short-period and broadband seismometers from the devastating 12 January 2010 M 7.0 Haiti earthquake and the rich sequence of aftershocks. For the distance range 250–700 km, we estimate an average frequency-dependent Q(f?)=224(±27)f?0.64(±0.073) using horizontal components of motion and note that Q(f?) estimated with Lg at regional distances is very consistent across vertical and horizontal components. We also determine a Q(f?)=142(±21)f?0.71(±0.11) for direct S waves at local distances, =100??km. The strong attenuation observed on both vertical and horizontal components of motion is consistent with expectations for a tectonically active region.Online Material: Figures of filtered and broadband data, Lg- and S-wave amplitudes, and apparent frequency-dependent Q, and tables of earthquake and station parameters.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-10-04
    Description: In this study, I consider the ground motions generated by 11 moderate ( M w  4.0–5.6) earthquakes in the central and eastern United States that are thought or suspected to be induced by fluid injection. Using spatially rich intensity data from the U.S. Geological Survey "Did You Feel It?" system, I show the distance decay of intensities for all events is consistent with that observed for tectonic earthquakes in the region, but for all of the events, intensities are lower than the values predicted from an intensity prediction equation that successfully characterizes intensities for regional tectonic events. I introduce an effective intensity magnitude M IE , defined as the magnitude that on average would generate a given intensity distribution. For all 11 events, M IE is lower than the event magnitude by 0.4–1.3 magnitude units, with an average difference of 0.82 units. This suggests stress drops of injection-induced earthquakes are systematically lower than tectonic earthquakes by an estimated factor of 2–10. However, relatively limited data suggest intensities for epicentral distances less than 10 km are more commensurate with expectations for the event magnitude, which can be reasonably explained by the shallow focal depth of the events. The results suggest damage from injection-induced earthquakes will be especially concentrated in the immediate epicentral region.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-01
    Description: Haiti has been the locus of a number of large and damaging historical earthquakes. The recent 12 January 2010 M w  7.0 earthquake affected cities that were largely unprepared, which resulted in tremendous losses. It was initially assumed that the earthquake ruptured the Enriquillo Plantain Garden fault (EPGF), a major active structure in southern Haiti, known from geodetic measurements and its geomorphic expression to be capable of producing M  7 or larger earthquakes. Global Positioning Systems (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data, however, showed that the event ruptured a previously unmapped fault, the Léogâne fault, a north-dipping oblique transpressional fault located immediately north of the EPGF. Following the earthquake, several groups installed temporary seismic stations to record aftershocks, including ocean-bottom seismometers on either side of the EPGF. We use data from the complete set of stations deployed after the event, on land and offshore, to relocate all aftershocks from 10 February to 24 June 2010, determine a 1D regional crustal velocity model, and calculate focal mechanisms. The aftershock locations from the combined dataset clearly delineate the Léogâne fault, with a geometry close to that inferred from geodetic data. Its strike and dip closely agree with the global centroid moment tensor solution of the mainshock but with a steeper dip than inferred from previous finite fault inversions. The aftershocks also delineate a structure with shallower southward dip offshore and to the west of the rupture zone, which could indicate triggered seismicity on the offshore Trois Baies reverse fault. We use first-motion focal mechanisms to clarify the relationship of the fault geometry to the triggered aftershocks. Online Material: Tables of hypocenter locations and focal mechanisms, and Figure showing azimuthal variation with respect to travel-time residuals.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-12-01
    Description: The M  7.0 Haiti earthquake of 12 January 2010 caused catastrophic damage and loss of life in the capital city of Port-au-Prince. The extent of the damage was primarily due to poor construction and high population density. The earthquake was recorded by only a single seismic instrument within Haiti, an educational seismometer that was neither bolted to the ground nor able to record strong motion on scale. The severity of near-field mainshock ground motions, in Port-au-Prince and elsewhere, has thus remained unclear. We present a detailed, quantitative analysis of the marks left on a tile floor by an industrial battery rack that was displaced by the earthquake in the Canape Vert neighborhood in the southern Port-au-Prince metropolitan region. Results of this analysis, based on a recently developed formulation for predicted rigid body displacement caused by sinusoidal ground acceleration, indicate that mainshock shaking at Canape Vert was approximately , corresponding to a modified Mercalli intensity of VIII. Combining this result with the weak-motion amplification factor estimated from aftershock recordings at the site as well as a general assessment of macroseismic effects, we estimate the peak acceleration to be for sites in central Port-au-Prince that experienced relatively moderate damage and where estimated weak-motion site amplification is lower than that at the Canape Vert site. We also analyze a second case of documented rigid body displacement, at a location less than 2 km from the Canape Vert site, and estimate the peak acceleration to be approximately at this location. Our results illustrate how observations of rigid body horizontal displacement during earthquakes can be used to estimate peak ground acceleration in the absence of instrumental data.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-07-01
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-04
    Description: We investigate an early nineteenth-century earthquake that has been previously cataloged but not previously investigated in detail or recognized as a significant event. The earthquake struck at approximately 4:30 a.m. LT on 8 January 1817 and was widely felt throughout the southeastern and mid-Atlantic United States. Around 11:00 a.m. the same day, an eyewitness described a 12-inch tide that rose abruptly and agitated boats on the Delaware River near Philadelphia. We show that the timing of this tide is consistent with the predicted travel time for a tsunami generated by an offshore earthquake 6–7 hours earlier. By combining constraints provided by the shaking intensity distribution and the tsunami observation, we conclude that the 1817 earthquake had a magnitude of low- to mid- M  7 and a location 800–1000 km offshore of South Carolina. Our results suggest that poorly understood offshore source zones might represent a previously unrecognized hazard to the southern and mid-Atlantic coast. Both observational and modeling results indicate that potential tsunami hazard within Delaware Bay merits consideration: the simple geometry of the bay appears to catch and focus tsunami waves. Our preferred location for the 1817 earthquake is along a diffuse northeast-trending zone defined by instrumentally recorded and historical earthquakes. The seismotectonic framework for this region remains enigmatic.
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-01-23
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-03-01
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-07-01
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...