ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (22)
  • 1
    Publication Date: 2014-09-10
    Description: The Swedish concept for geological disposal of radioactive waste involves the use of bentonite as part of an engineered barrier system. A primary function of the bentonite is its ability to swell when hydrated by its surroundings. One particular uncertainty is the impact on this function, resulting from deviations in pore-water pressure, p w , from expected in situ hydrostatic conditions. We present results from a series of laboratory experiments designed to investigate the form of the relationship between swelling pressure and p w , for compacted Mx80 bentonite, from low to elevated applied water pressure conditions. The experiments were conducted using constant volume cells, designed to allow the total stresses acting on the surrounding vessel to be monitored (at five locations) during clay swelling. The results demonstrate that swelling pressure reduces non-linearly with increasing p w , becoming less sensitive to changes at elevated pressures. After cyclic loading a marked hysteresis was also observed, with swelling pressure remaining elevated after a subsequent reduction in applied water pressure. Such behaviour may impact the mechanical and transport properties of the bentonite and its resulting performance. However, such hysteric behaviour was not always observed. Further testing is required to better understand the causes of this phenomenon and the controls on such behaviour.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-24
    Description: A UK repository concept currently under consideration for the disposal of intermediate-level radioactive waste and some low-level waste not suitable for surface disposal involves using large quantities of cementitious materials for construction, grouting, waste containers, waste isolation matrix and buffer/backfill. CO 2 generated from the degradation of organic material in the waste will result in cement carbonation and associated mineralogical changes. Hydraulic and gas permeability tests were performed on Nirex Reference Vault Backfill (NRVB) cement at 40 °C and either 4 or 8 MPa. Carbonation reactions using CO 2 gas halved the permeability of the NRVB under simulated repository conditions. A greater decrease in permeability (by three orders of magnitude) was found during carbonation using dissolved CO 2 . Mineralogical changes were found to occur throughout the cement as a result of the reaction with CO 2 . However, a narrow zone along the leading edge of a migrating reaction front was associated with the greatest decrease in porosity. Fluid pressures increased slightly due to permeability reductions but fluid flow still continued (albeit at a lower rate) preventing the build-up of overly high pressures. Overall, the observed reductions in permeability could be beneficial in that they may help reduce the potential for fluid flow and radionuclide migration. However, continued carbonation could lead to potential issues with regards to gas pressure build-up.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-07-12
    Description: In a Swedish repository for the disposal of heat-emitting waste, the long-term thermal stability of the bentonite engineered barrier forms a key component of the safety case. Central to such consideration is the evolution of hydraulic permeability and a potential degradation of hydraulic properties, in response to prolonged thermal exposure of the clay. To address this issue, a detailed programme of laboratory-based experiments has been undertaken at both the British Geological Survey and Studiecentrum voor Kernenergie/Centre d'Etude de L'Energie Nucleaire, in order to examine the hydraulic behaviour of bentonite that had previously been exposed to elevated temperatures. Hydraulic properties were calculated from both steady-state pressure gradients and from analysis of the pressure transients. Inspection of the data found no significant difference in hydraulic behaviour between the virgin material and clay samples taken from the Canister Retrieval Test. Based on these observations, the authors find no evidence for an adverse increase in hydraulic conductivity of bentonite as a result of prolonged thermal exposure to temperatures of 80 °C.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-05-09
    Description: The Swedish concept for geological disposal of radioactive waste involves the use of bentonite as part of an engineered barrier system. A primary function of the bentonite is its ability to swell when hydrated by its surroundings. One particular uncertainty is the impact on this function, resulting from deviations in pore-water pressure, p w , from expected in situ hydrostatic conditions. We present results from a series of laboratory experiments designed to investigate the form of the relationship between swelling pressure and p w , for compacted Mx80 bentonite, from low to elevated applied water pressure conditions. The experiments were conducted using constant volume cells, designed to allow the total stresses acting on the surrounding vessel to be monitored (at five locations) during clay swelling. The results demonstrate that swelling pressure reduces non-linearly with increasing p w , becoming less sensitive to changes at elevated pressures. After cyclic loading a marked hysteresis was also observed, with swelling pressure remaining elevated after a subsequent reduction in applied water pressure. Such behaviour may impact the mechanical and transport properties of the bentonite and its resulting performance. However, such hysteric behaviour was not always observed. Further testing is required to better understand the causes of this phenomenon and the controls on such behaviour.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-05-14
    Description: In a Swedish repository for the disposal of heat-emitting waste, the long-term thermal stability of the bentonite engineered barrier forms a key component of the safety case. Central to such consideration is the evolution of hydraulic permeability and a potential degradation of hydraulic properties, in response to prolonged thermal exposure of the clay. To address this issue, a detailed programme of laboratory-based experiments has been undertaken at both the British Geological Survey and Studiecentrum voor Kernenergie/Centre d'Etude de L'Energie Nucleaire, in order to examine the hydraulic behaviour of bentonite that had previously been exposed to elevated temperatures. Hydraulic properties were calculated from both steady-state pressure gradients and from analysis of the pressure transients. Inspection of the data found no significant difference in hydraulic behaviour between the virgin material and clay samples taken from the Canister Retrieval Test. Based on these observations, the authors find no evidence for an adverse increase in hydraulic conductivity of bentonite as a result of prolonged thermal exposure to temperatures of 80 °C.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-03-07
    Description: The Large Scale Gas Injection Test (Lasgit) is a field-scale experiment designed to study the impact of gas buildup and subsequent migration through an engineered barrier system. Lasgit has a substantial experimental dataset containing in excess of 21 million datum points. The dataset is anticipated to contain a wealth of information, ranging from long-term trends and system behaviours to small-scale or ‘second-order’ features. In order to interrogate the Lasgit dataset, a bespoke computational toolkit, designed to expose difficult to observe phenomena, has been developed and applied to the dataset. The preliminary application of the toolkit, presented here, has resulted in a large number of phenomena being indicated/quantified, including highlighting of second-order events (small gas flows, perturbations in stress/pore-water sensors, etc.) and quantification of temperature record frequency content. Localized system behaviour has been shown to occur along with systematic aberrant behaviours that remain unexplained.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-01-30
    Description: A new data analysis toolkit which is suitable for the analysis of large-scale, long-term datasets and the phenomenon/anomalies they represent is described. The toolkit aims to expose and quantify scientific information in a number of forms contained within a time-series based dataset in a quantitative and rigorous manner, reducing the subjectivity of observations made, thereby supporting the scientific observer. The features contained within the toolkit include the ability to handle non-uniform datasets, time-series component determination, frequency component determination, feature/event detection and characterization/parameterization of local behaviours. An application is presented of a case study dataset arising from the ‘Lasgit’ experiment.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-01-30
    Description: To understand the fate and impact of gas produced within a repository for radioactive waste, a series of laboratory and field scale experiments have been performed on the Callovo-Oxfordian claystone (COx), the proposed host rock for the French repository. Results show the movement of gas is through a localized network of pathways, whose properties vary temporarily and spatially within the claystone. Significant evidence exists from detailed laboratory studies for the movement of gas along highly unstable pathways, whose aperture and geometry vary as a function of local stress, gas and porewater pressures. The coupling of these parameters results in the development of significant time-dependent effects, impacting on all aspects of COx behaviour, from gas breakthrough time, to the control of deformation processes. Variations in gas entry, breakthrough and steady-state pressures are indicative of microstructural heterogeneity which exerts an important control on the movement of gas. The localization of gas flow is also evident in preliminary results from the large scale gas injection test (PGZ) where gas flow is initially focussed within the excavation damaged zone (EDZ), which acts as a preferential pathway for gas. Numerical models based on conventional two-phase flow theory are unable to adequately describe the detailed observations from laboratory tests.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-01-30
    Description: The concept of effective stress is one of the basic tenets of rock mechanics where the stress acting on a rock can be viewed as the total stress minus the pore water pressure. In many materials, including clay-rich rocks, this relationship has been seen to be imperfect and a coefficient () is added to account for the mechanical properties of the clay matrix. Recent experimental results during the flow testing (both gas and water) of several rocks (Callovo-Oxfordian claystone, Opalinus Clay, Boom Clay) and geomaterials (bentonite, kaolinite) has given evidence for stable high pressure differentials. The design of the experiments allows multiple measurements of pore pressure, which commonly shows a complex distribution for several different experimental geometries. The observed stable high pressure differentials and heterogeneous pore pressure distribution makes the describing of stress states in terms of effective stress complex. Highly localized pore pressures can be sustained by argillaceous materials and concepts of evenly distributed pore pressures throughout the sample (i.e. conventional effective stress) do not fit many clay-rich rocks if the complexities observed on the micro-scale are not incorporated, especially when considering the case of gas flow.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-01-30
    Description: Understanding flow along fractures and faults is of importance to the performance assessment (PA) of a geological disposal facility (GDF) for radioactive waste. Flow can occur along pre-existing fractures in the host-rock or along fractures created during the construction of the GDF within the excavation damage zone (EDZ). The complex fracture network will have a range of orientations and will exist within a complex stress regime. Critical stress theory suggests that fractures close to localized shear failure are critically stressed and therefore most conductive to fluid flow. Analysis of fault geometry and stress conditions at Sellafield has revealed that no features were found to be, or even close to being, classified as critically stressed, despite some being conductive. In order to understand the underlying reasons why non-critically stressed fractures were conductive a series of laboratory experiments were performed. A bespoke angled shear rig (ASR) was built in order to study the relationship between fluid flow (water and gas) through a fracture surface as a function of normal load. Fluid flow reduced with an increase in normal load, as expected. During unloading considerable hysteresis was seen in flow and shear stress. Fracture flow was only partially recovered for water injection, whereas gas flow increased remarkably during unloading. The ratio of shear stress to normal stress seems to control the fluid flow properties during the unloading stage of the experiment demonstrating its significance in fracture flow. The exhumation of the Sellafield area during the Palaeogene–Neogene resulted in considerable stress relaxation and in fractures becoming non-critically stressed. The hysteresis in shear stress during uplift has resulted in faults remaining, or becoming, conductive. The field and laboratory observations illustrate that understanding the stress-history of a fractured rock mass is essential, and a mere understanding of the current stress regime is insufficient to estimate the flow characteristics of present-day fractures.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...