ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (7)
Collection
Years
Year
  • 1
    Publication Date: 2010-12-01
    Description: The nature of downward wave coupling between the stratosphere and troposphere in both hemispheres is analyzed using the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) dataset. Downward wave coupling occurs when planetary waves reflected in the stratosphere impact the troposphere, and it is distinct from zonal-mean coupling, which results from wave dissipation and its subsequent impact on the zonal-mean flow. Cross-spectral correlation analysis and wave geometry diagnostics reveal that downward wave-1 coupling occurs in the presence of both a vertical reflecting surface in the mid-to-upper stratosphere and a high-latitude meridional waveguide in the lower stratosphere. In the Southern Hemisphere, downward wave coupling occurs from September to December, whereas in the Northern Hemisphere it occurs from January to March. A vertical reflecting surface is also present in the stratosphere during early winter in both hemispheres; however, it forms at the poleward edge of the meridional waveguide, which is not confined to high latitudes. The absence of a high-latitude waveguide allows meridional wave propagation into the subtropics and decreases the likelihood of downward wave coupling. The results highlight the importance of distinguishing between wave reflection in general, which requires a vertical reflecting surface, and downward wave coupling between the stratosphere and troposphere, which requires both a vertical reflecting surface and a high-latitude meridional waveguide. The relative roles of downward wave and zonal-mean coupling in the Southern and Northern Hemispheres are subsequently compared. In the Southern Hemisphere, downward wave-1 coupling dominates, whereas in the Northern Hemisphere downward wave-1 coupling and zonal-mean coupling are found to be equally important from winter to early spring. The results suggest that an accurate representation of the seasonal cycle of the wave geometry is necessary for the proper representation of downward wave coupling between the stratosphere and troposphere.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-09-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-15
    Description: The impact of stratospheric ozone changes on downward wave coupling between the stratosphere and troposphere in the Southern Hemisphere is investigated using a suite of Goddard Earth Observing System chemistry–climate model (GEOS CCM) simulations. Downward wave coupling occurs when planetary waves reflected in the stratosphere impact the troposphere. In reanalysis data, the climatological coupling occurs from September to December when the stratospheric basic state has a well-defined high-latitude meridional waveguide in the lower stratosphere that is bounded above by a reflecting surface, called a bounded wave geometry. Reanalysis data suggests that downward wave coupling during November–December has increased during the last three decades. The GEOS CCM simulation of the recent past captures the main features of downward wave coupling in the Southern Hemisphere. Consistent with the Modern Era Retrospective-Analysis for Research and Application (MERRA) dataset, wave coupling in the model maximizes during October–November when there is a bounded wave geometry configuration. However, the wave coupling in the model is stronger than in the MERRA dataset, and starts earlier and ends later in the seasonal cycle. The late season bias is caused by a bias in the timing of the stratospheric polar vortex breakup. Temporal changes in stratospheric ozone associated with past depletion and future recovery significantly impact downward wave coupling in the model. During the period of ozone depletion, the spring bounded wave geometry, which is favorable for downward wave coupling, extends into early summer, due to a delay in the vortex breakup date, and leads to increased downward wave coupling during November–December. During the period of ozone recovery, the stratospheric basic state during November–December shifts from a spring configuration back to a summer configuration, where waves are trapped in the troposphere, and leads to a decrease in downward wave coupling. Model simulations with chlorine fixed at 1960 values and increasing greenhouse gases show no significant changes in downward wave coupling and confirm that the changes in downward wave coupling in the model are caused by ozone changes. The results reveal a new mechanism wherein stratospheric ozone changes can affect the tropospheric circulation.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-09-24
    Description: The Hadley circulation (HC) has widened in recent decades, and it widens as the climate warms in simulations. But the mechanisms responsible for the widening remain unclear, and the widening in simulations is generally smaller than observed. To identify mechanisms responsible for the HC widening and for model–observation discrepancies, this study analyzes how interannual variations of tropical-mean temperatures and meridional temperature gradients influence the HC width. Changes in mean temperatures are part of any global warming signal, whereas changes in temperature gradients are primarily associated with ENSO. Within this study, 6 reanalysis datasets, 22 Atmospheric Modeling Intercomparison Project (AMIP) simulations, and 11 historical simulations from phase 5 of the Climate Modeling Intercomparison Project (CMIP5) are analyzed, covering the years 1979–2012. It is found that the HC widens as mean temperatures increase or as temperature gradients weaken in most reanalyses and climate models. On average, climate models exhibit a smaller sensitivity of HC width to changes in mean temperatures and temperature gradients than do reanalyses. However, the sensitivities differ substantially among reanalyses, rendering the HC response to mean temperatures in climate models not statistically different from that in reanalyses. While global-mean temperatures did not increase substantially between 1997 and 2012, the HC continued to widen in most reanalyses. The analysis here suggests that the HC widening from 1979 to 1997 is primarily the result of global warming, whereas the widening of the HC from 1997 to 2012 is associated with increased midlatitude temperatures and hence reduced temperature gradients during this period.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-01-01
    Description: The interaction of midlatitude eddies and the thermally driven Hadley circulation is studied using an idealized shallow-water model on the rotating sphere. The contributions of the annually averaged differential heating, vertical advection of momentum from a stationary boundary layer, and the gross effect of eddies, parameterized by Rayleigh damping, including a hemispherically asymmetric damping, are examined at steady state. The study finds that the relative dominance of eddies, as quantified by the local Rossby number, is predicted by an effective macroturbulent Hadley circulation Prandtl number Pr. In addition, viscous solutions of the Hadley circulation width and strength, subtropical jet amplitude, and equator-to-pole temperature difference scale as deviations from the respective inviscid solutions. Semianalytic solutions for the steady circulation are derived in the limit of weak eddy dominance (small Pr) as deviations from the respective inviscid solutions. These solutions follow a three-region paradigm: weak temperature gradient at the ascending branch of the Hadley circulation, monotonically decreasing angular momentum at the descending branch, and modified radiative–convective equilibrium at the extratropics. Using the three-region solutions, scaling relations found in the full solutions are reproduced analytically. The weak eddy-dominance solutions diverge from the full solutions as Pr increases and may become invalid for Pr 〉 1 due to the breakdown of the three-region global circulation structure. The qualitative predictions of the response of the Hadley circulation to heating based on the weak eddy-dominance solutions and Pr are in agreement with the findings of more complex models and the observed atmosphere.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-03-27
    Description: An abrupt transition from a merged jet regime to a subtropical jet regime is analyzed using a two-layer modified quasigeostrophic (QG) spherical model. Unlike the common version of QG models, this model includes advection of the zonal mean momentum by the ageostrophic mean meridional circulation, allowing for a relatively realistic momentum balance in the tropics and subtropics. The merged jet is a single jet inside the Ferrel cell created by a merging of the subtropical and eddy-driven jets, and the subtropical jet is a mainly thermally driven jet at the Hadley cell edge. The maintenance of each type of jet depends on the dominant baroclinic modes. In the merged jet regime, the spectrum is dominated by intermediate-scale (wavenumbers 4–6) fast waves at the midlatitudes that grow close to the jet maximum. In the subtropical jet regime, the spectrum is dominated by long (wavenumbers 1–3) slow westward-propagating waves at high latitudes and somewhat weaker intermediate-scale slow waves at the midlatitudes. In the subtropical jet regime, waves equilibrate at weaker amplitudes than in the merged jet regime. A mechanism is found that explains why baroclinic instability is weaker in the subtropical jet regime, although the vertical shear of the mean flow is stronger, which has to do with the lower-level potential vorticity (PV) structure. The relevance of these results to the real atmosphere seams to hold in local zonal sections but not for the zonal mean.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-03-24
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...