ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (15)
Collection
Years
Year
  • 1
    Publication Date: 2011-01-01
    Description: The spread of an ensemble of weather predictions initialized from an ensemble Kalman filter may grow slowly relative to other methods for initializing ensemble predictions, degrading its skill. Several possible causes of the slow spread growth were evaluated in perfect- and imperfect-model experiments with a two-layer primitive equation spectral model of the atmosphere. The causes examined were the covariance localization, the additive noise used to stabilize the assimilation method and parameterize the system error, and the model error itself. In these experiments, the flow-independent additive noise was the biggest factor in constraining spread growth. Preevolving additive noise perturbations were tested as a way to make the additive noise more flow dependent. This modestly improved the data assimilation and ensemble predictions, both in the two-layer model results and in a brief test of the assimilation of real observations into a global multilevel spectral primitive equation model. More generally, these results suggest that methods for treating model error in ensemble Kalman filters that greatly reduce the flow dependency of the background-error covariances may increase the filter analysis error and decrease the rate of forecast spread growth.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-01
    Description: Probabilistic quantitative precipitation forecasts (PQPFs) were generated from The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) database from July to October 2010 using data from Europe (ECMWF), the United Kingdom [Met Office (UKMO)], the United States (NCEP), and Canada [Canadian Meteorological Centre (CMC)]. Forecasts of 24-h accumulated precipitation were evaluated at 1° grid spacing within the contiguous United States against analysis data based on gauges and bias-corrected radar data. PQPFs from ECMWF’s ensembles generally had the highest skill of the raw ensemble forecasts, followed by CMC. Those of UKMO and NCEP were less skillful. PQPFs from CMC forecasts were the most reliable but the least sharp, and PQPFs from NCEP and UKMO ensembles were the least reliable but sharper. Multimodel PQPFs were more reliable and skillful than individual ensemble prediction system forecasts. The improvement was larger for heavier precipitation events [e.g., 〉10 mm (24 h)−1] than for smaller events [e.g., 〉1 mm (24 h)−1]. ECMWF ensembles were statistically postprocessed using extended logistic regression and the five-member weekly reforecasts for the June–November period of 2002–09, the period where precipitation analyses were also available. Multimodel ensembles were also postprocessed using logistic regression and the last 30 days of prior forecasts and analyses. The reforecast-calibrated ECMWF PQPFs were much more skillful and reliable for the heavier precipitation events than ECMWF raw forecasts but much less sharp. Raw multimodel PQPFs were generally more skillful than reforecast-calibrated ECMWF PQPFs for the light precipitation events but had about the same skill for the higher-precipitation events; also, they were sharper but somewhat less reliable than ECMWF reforecast-based PQPFs. Postprocessed multimodel PQPFs did not provide as much improvement to the raw multimodel PQPF as the reforecast-based processing did to the ECMWF forecast. The evidence presented here suggests that all operational centers, even ECMWF, would benefit from the open, real-time sharing of precipitation forecast data and the use of reforecasts.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-05-01
    Description: This manuscript presents a detailed multiscale analysis—using observations, model analyses, and ensemble forecasts—of the extreme heat wave over Russia and historic floods over Pakistan during late July 2010, with an emphasis on the floods over northern Pakistan. The results show that recirculation of air and dynamically driven subsidence occurring with the intensification of the blocking anticyclone in late July 2010 were key factors for producing the exceptionally warm temperatures over western Russia. Downstream energy dispersion from the blocking region led to trough deepening northwest of Pakistan and ridge building over the Tibetan Plateau, thereby providing the linkage between the Russian heat wave and Pakistan flood events on the large scale, in agreement with previous studies. The extratropical downstream energy dispersion and enhanced convective outflow on the large scale associated with the active phase of the Madden–Julian oscillation facilitated the formation of an intense upper-level jet northwest of Pakistan. During this same period an intense southeasterly, low-level, barrier jet–like feature formed over northern Pakistan in conjunction with a westward-moving monsoon depression. This low-level jet and deep easterly flow on the equatorward flank of an anomalous anticyclone over the Tibetan Plateau further enhanced the transport of deep tropical moisture into Pakistan and produced a sustained upslope flow and an extended period of active convection, thereby providing an important contribution leading to the exceptional rainfall amounts. The deep easterly flow and intense low-level jet were features that were absent during previous convective episodes over northern Pakistan in 2010, and hence, were likely key factors in the increased severity of the late July event.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-10-01
    Description: NOAA’s second-generation reforecasts are approximately consistent with the operational version of the 2012 NOAA Global Ensemble Forecast System (GEFS). The reforecasts allow verification to be performed across a multidecadal time period using a static model, in contrast to verifications performed using an ever-evolving operational modeling system. This contribution examines three commonly used verification metrics for reforecasts of precipitation over the southeastern United States: equitable threat score, bias, and ranked probability skill score. Analysis of the verification metrics highlights the variation in the ability of the GEFS to predict precipitation across amount, season, forecast lead time, and location. Beyond day 5.5, there is little useful skill in quantitative precipitation forecasts (QPFs) or probabilistic QPFs. For lighter precipitation thresholds [e.g., 5 and 10 mm (24 h)−1], use of the ensemble mean adds about 10% to the forecast skill over the deterministic control. QPFs have increased in accuracy from 1985 to 2013, likely due to improvements in observations. Results of this investigation are a first step toward using the reforecast database to distinguish weather regimes that the GEFS typically predicts well from those regimes that the GEFS typically predicts poorly.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-12-01
    Description: The ability of five operational ensemble forecast systems to accurately represent and predict atmospheric rivers (ARs) is evaluated as a function of lead time out to 10 days over the northeastern Pacific Ocean and west coast of North America. The study employs the recently developed Atmospheric River Detection Tool to compare the distinctive signature of ARs in integrated water vapor (IWV) fields from model forecasts and corresponding satellite-derived observations. The model forecast characteristics evaluated include the prediction of occurrence of ARs, the width of the IWV signature of ARs, their core strength as represented by the IWV content along the AR axis, and the occurrence and location of AR landfall. Analysis of three cool seasons shows that while the overall occurrence of ARs is well forecast out to a 10-day lead, forecasts of landfall occurrence are poorer, and skill degrades with increasing lead time. Average errors in the position of landfall are significant, increasing to over 800 km at 10-day lead time. Also, there is a 1°–2° southward position bias at 7-day lead time. The forecast IWV content along the AR axis possesses a slight moist bias averaged over the entire AR but little bias near landfall. The IWV biases are nearly independent of forecast lead time. Model spatial resolution is a factor in forecast skill and model differences are greatest for forecasts of AR width. This width error is greatest for coarser-resolution models that have positive width biases that increase with forecast lead time.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-08-01
    Description: During the period 9–16 September 2013, more than 17 in. (~432 mm) of rainfall fell over parts of Boulder County, Colorado, with more than 8 in. (~203 mm) over a wide swath of Colorado’s northern Front Range. This caused significant flash and river flooding, loss of life, and extensive property damage. The event set a record for daily rainfall (9.08 in., or 〉230 mm) in Boulder that was nearly double the previous daily rainfall record of 4.8 in. (122 mm) set on 31 July 1919. The operational performance of precipitation forecast guidance from global ensemble prediction systems and the National Weather Service’s global and regional forecast systems during this event is documented briefly in the article and more extensively in online supplemental appendixes. While the precipitation forecast guidance uniformly depicted a much wetter-than-average period over northeastern Colorado, none of the global nor most of the regional modeling systems predicted precipitation amounts as heavy as analyzed. Notable exceptions to this were the Short-Range Ensemble Forecast (SREF) members that used the Advanced Research Weather Research and Forecasting Model (ARW-WRF) dynamical core. These members consistently produced record rainfall in the Front Range. However, the SREF’s record rainfall was also predicted to occur the day before the heaviest actual precipitation as well as the day of the heaviest precipitation.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-10-01
    Description: Experimental ensemble predictions of tropical cyclone (TC) tracks from the ensemble Kalman filter (EnKF) using the Global Forecast System (GFS) model were recently validated for the 2009 Northern Hemisphere hurricane season by Hamill et al. A similar suite of tests is described here for the 2010 season. Two major changes were made this season: 1) a reduction in the resolution of the GFS model, from 2009’s T384L64 (~31 km at 25°N) to 2010’s T254L64 (~47 km at 25°N), and some changes in model physics; and 2) the addition of a limited test of deterministic forecasts initialized from a hybrid three-dimensional variational data assimilation (3D-Var)/EnKF method. The GFS/EnKF ensembles continued to produce reduced track errors relative to operational ensemble forecasts created by the National Centers for Environmental Prediction (NCEP), the Met Office (UKMO), and the Canadian Meteorological Centre (CMC). The GFS/EnKF was not uniformly as skillful as the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble prediction system. GFS/EnKF track forecasts had slightly higher error than ECMWF at longer leads, especially in the western North Pacific, and exhibited poorer calibration between spread and error than in 2009, perhaps in part because of lower model resolution. Deterministic forecasts from the hybrid were competitive with deterministic EnKF ensemble-mean forecasts and superior in track error to those initialized from the operational variational algorithm, the Gridpoint Statistical Interpolation (GSI). Pending further successful testing, the National Oceanic and Atmospheric Administration (NOAA) intends to implement the global hybrid system operationally for data assimilation.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-09-01
    Description: Inflation of ensemble perturbations is employed in ensemble Kalman filters to account for unrepresented error sources. The authors propose a multiplicative inflation algorithm that inflates the posterior ensemble in proportion to the amount that observations reduce the ensemble spread, resulting in more inflation in regions of dense observations. This is justified since the posterior ensemble variance is more affected by sampling errors in these regions. The algorithm is similar to the “relaxation to prior” algorithm proposed by Zhang et al., but it relaxes the posterior ensemble spread back to the prior instead of the posterior ensemble perturbations. The new inflation algorithm is compared to the method of Zhang et al. and simple constant covariance inflation using a two-level primitive equation model in an environment that includes model error. The new method performs somewhat better, although the method of Zhang et al. produces more balanced analyses whose ensemble spread grows faster. Combining the new multiplicative inflation algorithm with additive inflation is found to be superior to either of the methods used separately. Tests with large and small ensembles, with and without model error, suggest that multiplicative inflation is better suited to account for unrepresented observation-network-dependent assimilation errors such as sampling error, while model errors, which do not depend on the observing network, are better treated by additive inflation. A combination of additive and multiplicative inflation can provide a baseline for evaluating more sophisticated stochastic treatments of unrepresented background errors. This is demonstrated by comparing the performance of a stochastic kinetic energy backscatter scheme with additive inflation as a parameterization of model error.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-01-24
    Description: Forecast characteristics of Northern Hemisphere atmospheric blocking and the Madden–Julian oscillation (MJO) were diagnosed using an extensive time series (December–February 1985–2012) of daily medium-range ensemble reforecasts based on a version of the NCEP Global Ensemble Forecast System (GEFS). For blocking, (i) interannual variability of analyzed blocking frequency was quite large, (ii) the GEFS slightly underforecasted blocking frequency at longer leads in the Euro-Atlantic sector, (iii) predictive skill of actual blocking was substantially smaller than its perfect-model skill, (iv) block onset and cessation were forecast less well than overall blocking frequency, (v) there was substantial variability of blocking skill between half-decadal periods, and (vi) the reliability of probabilistic blocking forecasts degraded with increasing lead time. For the MJO, (i) forecasts of strong Indian Ocean MJOs propagated too slowly, especially the component associated with outgoing longwave radiation (OLR), that is, convection; (ii) tropical precipitation was greatly overforecast at early lead times; (iii) the ensemble predictions were biased and/or underdispersive, manifested in U-shaped rank histograms of MJO indices (magnitude forecasts were especially U shaped); (iv) MJO correlation skill was larger for its wind than for its OLR component, and was larger for the higher-amplitude MJO events; (v) there was some half-decadal variability in skill; and (vi) probabilistic skill of the MJO forecast was modest, and skill was larger when measured relative to climatology than when measured relative to a lagged persistence forecast. For longer-lead forecasts, the GEFS demonstrated little ability to replicate the changes in blocking frequency due to a strong MJO that were noted in analyzed data.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-02-01
    Description: Verification was performed on ensemble forecasts of 2009 Northern Hemisphere summer tropical cyclones (TCs) from two experimental global numerical weather prediction ensemble prediction systems (EPSs). The first model was a high-resolution version (T382L64) of the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS). The second model was a 30-km version of the experimental NOAA/Earth System Research Laboratory’s Flow-following finite-volume Icosahedral Model (FIM). Both models were initialized with the first 20 members of a 60-member ensemble Kalman filter (EnKF) using the T382L64 GFS. The GFS–EnKF assimilated the full observational data stream that was normally assimilated into the NCEP operational Global Statistical Interpolation (GSI) data assimilation, plus human-synthesized “observations” of tropical cyclone central pressure and position produced at the National Hurricane Center and the Joint Typhoon Warning Center. The forecasts from the two experimental ensembles were compared against four operational EPSs from the European Centre for Medium-Range Weather Forecasts (ECMWF), NCEP, the Canadian Meteorological Centre (CMC), and the Met Office (UKMO). The errors of GFS–EnKF ensemble track forecasts were competitive with those from the ECMWF ensemble system, and the overall spread of the ensemble tracks was consistent in magnitude with the track error. Both experimental EPSs had much lower errors than the operational NCEP, UKMO, and CMC EPSs, but the FIM–EnKF tracks were somewhat less accurate than the GFS–EnKF. The ensemble forecasts were often stretched in particular directions, and not necessarily along or across track. The better-performing EPSs provided useful information on potential track error anisotropy. While the GFS–EnKF initialized relatively deep vortices by assimilating the TC central pressure estimate, the model storms filled during the subsequent 24 h. Other forecast models also systematically underestimated TC intensity (e.g., maximum forecast surface wind speed). The higher-resolution models generally had less bias. Analyses were conducted to try to understand whether the additional central pressure observation, the EnKF, or the extra resolution was most responsible for the decrease in track error of the experimental Global Ensemble Forecast System (GEFS)–EnKF over the operational NCEP. The assimilation of the additional TC observations produced only a small change in deterministic track forecasts initialized with the GSI. The T382L64 GFS–EnKF ensemble was used to initialize a T126L28 ensemble forecast to facilitate a comparison with the operational NCEP system. The T126L28 GFS–EnKF EPS track forecasts were dramatically better than the NCEP operational, suggesting the positive impact of the EnKF, perhaps through improved steering flow.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...